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Foreword

HE tremendous research and development effort that went into the

development of radar and related techniques during World War II
resulted not only in hundreds of radar sets for military (and some for
possible peacetime) use but also in a great body of information and new
techniques in the electronics and high-frequency fields. Because this
basic material may be of great value to science and engineering, it seemed
most important to publish it as soon as security permitted.

The Radiation Laboratory of MIT, which operated under the super-
vision of the National Defense Research Committee, undertook the great
task of preparing these volumes. The work described herein, however, is
the collective result of work done at many laboratories, Army, Navy,
university, and industrial, both in this country and in England, Canada,
and other Dominions.

The Radiation Laboratory, once its proposals were approved and
finances provided by the Office of Scientific Research and Development,
chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire
project. An editorial staff was then selected of those best qualified for
this type of task. Finally the authors for the various volumes or chapters
or sections were chosen from among those experts who were intimately
familiar with the various fields, and who were able and willing to write
the summaries of them. This entire staff agreed to remain at work at
MIT for six months or more after the work of the Radiation Laboratory
was complete. These volumes stand as a monument to this group.

These volumes serve as a memorial to the unnamed hundreds and
thousands of other scientists, engineers, and others who actually carried
on the research, development, and engineering work the results of which
are herein described. There were so many involved in this work and they
worked so closely together even though often in widely separated labora-
tories that it is impossible to name or even to know those who contributed
to a particular idea or development. Only certain ones who wrote reports
or articles have even been mentioned. But to all those who contributed
in any way to this great cooperative development enterprise, both in this
country and in England, these volumes are dedicated.

L. A. DuBRIDGE.
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Preface

HE work on linkage computers described in this volume was carried
Tout under the pressure of war. War gives little opportunity for the
advancement of abstract knowledge; all efforts must be concentrated on
meeting immediate needs. In developing techniques for the design of
linkage computers, the author has therefore been forced to concentrate on
finding practical methods for the design of computers rather than on
developing a unified and systematic analysis of the subject. The war has
thus given to this work a special character that it might not otherwise have
had.

The impulse to the development of the methods presented in this
volume for the mathematical design of linkage computers grew out of a
collaboration of the author with his friend, Dr. Vladimir Vand. That col-
laboration was begun in France in 1940, and was brought to a premature
end by the progress of the war. Though these ideas and methods have
largely been developed by the author since that time, he wishes to
emphasize that credit for the initiation of the work is shared by Dr.
Vand. It must be mentioned also that the techniques described in this
book were for the most part developed before the author became asso-
ciated with the Radiation Laboratory.

The author wishes to express sincere gratitude to Dr. H. M. James, the
editor of this volume, who gave the book its present form, contributing
many examples and many improvements to the methods. (Secs.: 67,68,
6-15, 86.)

The book would never have been completed in such a short time with-
out the assistance of Miss Constance D. Boyd, who read the manuscripts,
and Miss Elizabeth J. Campbell, Mrs. Kathryn G. Fowler, Miss Virginia
Driscoll, and Miss Patrica J. Boland, who calculated the tables and drew
nomograms. The author also wishes to thank Dr. I. Maddaus, Jr., for
bibliographical research.

The publishers have agreed that ten years after the date on which
each volume in this series is issued, the copyright thereon shall be
relinquished, and the work shall become part of the public domain.

A. Svoropa.
Prana, CZECHOSLOVAKIA,
June, 1946.



Vil




Contenls

FOREWORD Y L. A. DuBrRDGE ., . . . .

PREFACE. . . . . .

Cuar. 1.° COMPUTING MECHANISMS AND LINKAGES.

INTRODUCTION . . .

1.1, Types of Computing Mechanisms . . . . . .

1-2. Survey of the Problem of Computer Design . . . . .

1-3. Organization of the Present Volume . . .

ELEMENTARY COMPUTING MECHANISMS .
1-4. Additive Cells. . .
1-5. Multipliers . . . . . .
1-6. Resolvers. . . . . . .
1.7. Cams. . . . .. -
1.8. Integrators . . . . .

Caar. 2. BAR-LINKAGE COMPUTERS . . . . . . ..

21, Imtroduction. . . . . . . .
2-2. Historical Notes.

2:3. The Problem of Bar—lmkage-computer Deslgn .....

2-4. Characteristics of Bar-linkage Computers.

2-5. Bar Linkages with One Degree of Freedom . . . . . .
2-6. Bar Linkages with Two Degrees of Freedom. . . . . .

2-7. Complex Bar-linkage Computers. . . .

Cuar. 3. BASIC CONCEPTS AND TERMINOLOGY. .

3-1. Definitions . . . . ..
3-2. Homogeneous Pa.rameters and Varlables .
3:3. An Operator Formalism. . . . . . .

3-4. Graphical Representation of Operators ....... .
3-5. The Square and Square-root Operators . . . . . . . .

Cuap. 4. HARMONIC TRANSFORMER LINKAGES. .

TeE HaRMONIC TRANSFORMER. . .

4-1. Definition and Geometry of the Harmonic Transformer. . . . .
4-2. Mechanization of a Function by a Harmonic Transformer. . . .

ix

vit

-

Ut DD = e

58
58

58
61




X CONTENTS

4-3. The Ideal Harmonic Transformer in Homogeneous Parameters. 62

4-4. Tables of Harmonic Transformer Functions . . . . .. 63
4-5. Total Structural Error of a Nonideal Harmonic Transformer .. 67

4-6. Calculation of the Structural Error Function 6H; of a Nonideal
Harmonic Transformer. . . L. . . . . .. 68
4.7. A Study of the Structural Error Functlon 5Hk L .71
4-8. A Method for the Design of Nonideal Harmonic Transformers .75
Harmonic TRANSFORMERS IN SERIES. . . . . . . . . . . . . . . . . 177
49. Two Ideal Harmonic Transformers in Series. . . . 77

4:10. Mechanization of a Given Function by an Ideal Double Harmonlc
Transformer. . . . . . PR £
4-11. Preliminary Fit to a Monotomc Functlon e e e e 82
4-12. Preliminary Fit to a Nonmonotonic Function . . . . . . 89

4-13. Improvement of the Fit by a Method of Successive Approx1ma

tions. . . P R )
4-14. Nonideal Double Harmomc Transformers R . U8
4-15. Alternative Method for Double—harmomc-transformer Deslgn . 101
Cuar, 5. THE THREE-BAR LINKAGE . . . . . . N ... lo7
5-1. TFundamental Equations for the Three-bar Linkage. . . . . . . 107
52. Classification of Three-bar Linkages . . . . . . . . . . . . . 108
5.3. Singular Cases of Three-bar Linkages. . . . . . . . . . . . . 112
5-4. The Problem of Designing Three-bar Lmkages ..... P O i
Tae NomograpHic METHOD. . . . . . e 31
5-5. Analytic Basis of the Nomographic Method. . . . . . . . . . 118
5-6. The Nomographic Chart . . ., . . 129

5.7. Calculation of the Function Generated by a leen Three-bar
Linkage. . . . . 122

5-8. Complete Representatlon of Three—bar-hn_kage F unctlons b} the
Nomogram . . 125

59. Restatement of the Demgn Problem for the Nonzographlc
Method . . . . . . .. O B0 4
5:10. Survey of the Nomographic Method ...... .. .. 128
5-11. Adjustment of b, and a, for Fixed aAX,, AXz, b1 . . . . . . . . 132
5-12. Alternative Methods for Overlay Construction. . . . . . .. . 136
5-13. Choice of Best Value of by for Given AXy, AX,. . . . . . . .. 137
5-14. An Example of the Nomographic Method. . . . . . . . . . . 139
Tue GeoMETRIC METHOD FOR THREE-BAR LINRAGE DEsien . . . . . . 145
5:15. Statement of the Problem for the Geometric Method. . . . . . 146
5-16. Solution of a Simplified Problem. . . . . . . . . . . . . . . 147
5:17. Solution of the Basic Problem. . . . .. 151
5:-18. Improvement of the Solution by Successlve Apprommatlons .. 154

5-19. An Application of the Geometric Method: Mechanization of the
Logarithmic Function. . . . . . . . T ¥




CONTENTS

Cuar. 6. LINKAGE COMBINATIONS WITH ONE DEGREE OF FREE-

DOM . .

THREE-BAR LINKAGES IN SERIES.
6-8.

Cnar. 7. FINAL ADJUSTMENT OF LINKAGE CONSTANTS . . . .

7-1.
7-2.
7-3.
7-4.
7-5.
7-6.
7-7.

7:8.

7-9.

Cuar. 8. LINKAGES WITH TWO DEGREES OF FREEDOM . . .

81,
8-2.
83.
84.
8.5.
8-6.
87.

Example: Factoring the Given Funetion . L
Example: Design of the Three-bar-linkage Component L
Redesign of the Terminal Harmonic Transformers . . . . .
Example: Redesign of the Terminal Harmonic Transformers .
Example: Assembly of the Linkage Combination. . . .

The Double Three-bar Linkage .

Roles of Graphical and Numerical Methods in Linkage Design .
Gauging Parameters . . . . . . .
Use of the Gauging Parameter in Ad)ustlng Llnka.ge Constants .
Small Variations of Dimensional Constants . . . . . . .
Large Variations of Dimensional Constants . . . . . .
Method of Least Squares . . . . . . .

Application of the Gauging-parameter Method to the Three bar

Application of the Gaugmg parameter Method to the Three bar
Linkage. An Example. e
The Eccentric Linkage as a Correctwe Dev1ce

Analysis of the Design Problem . . . . . . .
Possible Grid Generators for a Given Functlon .......
The Concept of Grid Structure . L
Topological Transformation of Grid Structures .......
The Significance of Ideal Grid Structure .

Choice of a Nonideal Grid Generator. . .

Use of Grid Structures in Linkage Design. .

Caar. 9. BAR-LINKAGE MULTIPLIERS . .

9-1.
9-2.

The Star Grid Generator . . . . . .

A Method for the Design of Star Grld Generators w1th Almost
Ideal Grid Structure . . . . . . . e

Grid Generators for Multiplication.

A Topological Transformation of the Grid Structure of a D1v1der

Improvement of the Star Grid Generator for Multiplication.

Design of Transformer Linkages. .

Analytic Adjustment of Linkage Multlpher Constants .

Alternative Method for Gauging the Error of a Grid Generator .

xi

166

. 166
. 168
171
. 174
. 186
. 187
. 193

. 195
. 195

. 199

. 199
. 202
. 201
. 205
. 205

206

207

. 209
. 217

. 223

.. 223
. 226
. 228
. 232
.. 233
. 238
. 243

.250

. 250

. 251
. 256

258

. 264
. 271
. 277

281




xii CONTENTS

Cuar. 10. BAR-LINKAGE FUNCTION GENERATORS WITH TWO DE-
GREES OF FREEDOM . e .

10.1. Summary of the Design Procedure. . . . . . . . . . . . .

10-2. Example: First Approximate Mechanization of the Balhstlc
Function in Vacuum . . . . . . . . .

10-3. Example: Improving the Mechanization of the Balhstlc Functlon
in Vacuum .

10-4. Curve Tracing and Transformer Lmkages for Noncm:ula.r Scales

APPENDIX A. Tasies or HarmoNIc TRANSFORMER FUNCTIONS .
APPENDIX B. PRrROPERTIES OF THE THREE-BAR-LINKAGE NOMOGRAM .

INDEX. . . .

. 284

284

286

. 292

295

. 301

. 333

. 353




CHAPTER 1
INTRODUCTION

1.1. Types of Computing Mechanisms.—Computing mechanisms
may be divided into two distinct types: arithmetical computing machines,
familiar to the layman through their common use in business offices, and
continuously acting computing mechanisms and linkages that range in
complexity from simple cams and levers to enormously complex devices
for the direction of naval and antiaircraft gunfire.

The arithmetical computing machines accept inputs in numerical
form, usually on a keyboard, and with these numbers perform the simple
arithmetical operations of addition, subtraction, multiplication, and
division—usually by the iteration of addition and subtraction in counting
devices. The results are finally presented to the operator, again in numer-
ical form. In their simplest forms these machines have the virtue of
applicability in a wide variety of computations, including those requiring
very high accuracy. By elaboration of these devices, as by the introduc-
tion of punched-tape control, their possibilities for automatic operation
can be greatly increased. Characteristic of their operation, however, is
their production of numerical results by calculations in discrete steps,
involving delays which are always appreciable and may be very large
if the required calculation is of complex form.

Continuously acting computing mechanisms are less flexible and have
less potential accuracy, but their applicability to the instantaneous or to
the continuous solution of specific problems—even quite complex ones—
makes them of great practical importance. They may serve as mere
indicators of the solutions of a problem, and require further action by
human agency for the completion of their function (speedometer, slide
rule); or they may themselves produce a mechanical action functionally
related to other mechanical actions (mechanical governors, automatic
gunsight).

Continuously acting computers fall into two main classes: function
generators and differential-equation solvers. Function generators pro-
duce mechanical actions—usually displacements or shaft rotations—that
are definite functions of many independent variables, themselves intro-
duced into the mechanism as mechanical actions. Simple examples of
such mechanisms are gear differentials, two- and three-dimensional cams,
slide multipliers and dividers, linkage computers, and mechanized nomo-

grams. Computers of the second class generate solutions of some definite
1




2 INTRODUCTION [SEc. 1.2

differential or integrodifferential equation—often an equation that
involves functions continuously determined by variable external cir-
cumstances. Elementary devices of this type are the integrators, com-
ponent solvers, speedometers, and planimeters.

From these elementary devices one can build up complicated mecha-
nisms that perform elaborate calculations. We may mention their
application in gunsights, bombsights, automatic pilots (for airplanes,
submarines, ships, and torpedoes), compensators for gyroscopic com-
passes, tide predictors, and other robots of varied types.

The present volume will deal only with the problem of designing con-
tinuously acting computing mechanisms.

1.2. Survey of the Problem of Computer Design.—There is no set
rule or law for the guidance of a designer of complex mechanical com-
puters. He must weigh against each other many diverse factors in the
problem: the accuracy required; the cost, weight, volume, and shape of the
computer; its inertia and delay in action; the forces required to operate it;
its resistance to shock, wear, and changes in weather conditions. He must
consider how long it will take to design the computer, how easily it can
be built, how easily it can be operated by a crew, whether suitable sources
of power will be available, and so on. The complexity of the theoretical
and practical problems is so great that two designers working on a given
problem will never arrive at precisely the same solution.

For practical reasons, a designer should be asked to find a computer
that meets certain specified tolerances, rather than the best possible
computer for a given use. He should know what will be the maximum
tolerated error of the computer, the maximum cost, weight, and volume
occupied, the maximum number of operators in the crew, the maximum
number of servomechanisms allowed, and so on. Tolerances provide a
convenient means for controlling the development of the computer, and—
if established in a practical way—they permit some freedom of choice by
the designer.

Choice of Approach to the Design Problem.—The type of computer to be
built is sometimes indicated in the specifications. If not, the first task
of the designer is to decide whether the computer is to be mechanical,
electrical, optical, or a combination of these. At the same time that this
important decision is made, the designer must weigh in his mind the path
that his thinking will follow. There are two principal methods for design-
ing a computer: the constructive method and the analytic.

The constructive method makes use of a small-scale model of the real
system with which the computer is to deal. For example, a constructive
antiaircraft fire-control computer might determine the elements of the
lead triangle by maintaining within itself and measuring the elements of a
small model of this triangle.
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In using the analytic method, the designer concentrates on the analytie
relations between the variables involved. A relation between variables,
such as

z=:cy+§: q))

can be given mechanical expression in terms of displacements or shaft
rotations, without regard to the nature of the quantity represented by the
variables z, ¥, and 2. For example, one may possess two devices that
generate output displacements zy and x/y, respectively, given input dis-
placements x and y. Combining these with a third device for adding their
output displacements, one can then produce a computer that, given input
displacements = and y, generates a final output displacement z having
continuously the value specified by Eq. (1). The computer is then a
“mechanization” of Eq. (1), rather than a model of any special system
involving variables z, y, and 2z thus related.

Computers designed by analytic methods consist of units (‘“cells’’)
that mechanize fairly simple relations, so connected as to provide a
mechanization of a more complex equation or system of equations. For
any given problem a great variety of designs is possible. This variety
arises in part from the possible choice among mechanical cells mechaniz-
ing a given elementary relation, and in part from the variety of ways in
which the relation between a given set of variables can be given analytic
expression. Thus, each of the equations

z = g @+ 1), (2a)
c=2(v+)) (26)
2y = a(y? + 1), (2c)

[all equivalent to Eq. (1)] suggests a different method of connecting
mechanical cells into a complete computer. This flexibility in analytic
design methods makes it possible to arrive at designs that are in general
more satisfactory mechanically than those obtained by constructive
methods.

In the present volume we shall be concerned entirely with mechanical
computers designed by the analytic method.

Block Diagram of the Computer.—To each formulation of the problem
in analytic terms there corresponds a block diagram of the computer.
In this diagram each analytic relation between variables is represented
by a square or similar symbol, from which emerge lines representing the
variables involved; a line representing a variable common to two relations
will connect the corresponding squares in the diagram. In mechanical
terms, each square then represents an elementary computer that estab-
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lishes a specified relation between the variables, and the connecting lines
represent the necessary connections between these elementary com-
puters. By examination of block diagrams the designer will be able to
gee the principal virtues of each computing scheme: the complexity of the
system, the working range of variables, the accuracy required of individual
components, and so on. On this basis he can make at least a tentative
selection of the block diagram to be used.

Selection of Components for the Computer.—Knowing the accuracy and
mechanical properties required of each computing element, the designer
can select the elementary computers from which the complete device is to
be built.

As an example of the diverse factors to be borne in mind, let us suppose
that it is required to provide a mechanical motion proportional to the
product of two variables, X, and X;. A slide multiplier of average size
will allow an error of from 0.1 per cent to 0.5 per cent of the whole range
of the variable; this error will depend on the quality of the construction
—on the backlash and the elasticity of the system. A linkage multiplier
will have an error of some 0.3 per cent due to its structure, practically no
error from backlash, and a slight error due to elasticity of the system if the
unit is well designed; the space required by a linkage multiplier is small,
but its error cannot be reduced by increasing its size. If these devices do
not promise sufficient accuracy, the designer must use multipliers based
on other principles. It is possible to perform multiplication by use of
two of the precision squaring devices illustrated in Fig. 1-23, by connect-
ing these in the way suggested by the equation

X1X2 = ]1:(X1 -+ X2)2 - 'i'(Xl - Xz)z- (3)

The error of such a multiplier may be as low as 0.01 per cent, but the
system has an appreciable inertia. About the same accuracy is attain-
able by a multiplier based on the differential formula for multiplication,

d(X1Xz) = deXz+X2dX1; (4)

this employs two integrators, and is commonly used when two quantities
are to be multiplied in a differential analyzer. This scheme is useful only
when it is possible to allow a slow change in a constant added to the
product X;X,—a change which will result from slippage in the integra-
tors, negligible for a single multiplication but accumulating with repetition
of the operation.

From this discussion it should be evident that there is no ‘“best”
multiplier. Similarly, other components of a computer must be selected
with due regard for their special characteristics and the demands to be
made upon them.

Mathematical Design of the System.—From the block diagram one
should proceed to the mechanical design of a system through an inter-
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mediate step—that of establishing the ‘‘mathematical design” of the
system. The mathematical design ignores the dimensions not essential
to the nature of the computation to be carried out—diameters of shafts,
dimensions of ball bearings, dimensions of the frame—but specifies the
dimensions of levers measured between pivots and joints, the size of frie-
tion wheels, tentative gear diameters and gear ratios. The properties of
this design should be studied carefully, because this usually leads to a
change in some detail of the design, and sometimes even to choice of a new
block diagram.

Final Steps in the Design.—From the mathematical design of the
system one can proceed to the design of a working model. The elements
of this model should be accessible rather than massed together, inexpen-
sive, and quick to manufacture. If the performance of the working model
is found to be satisfactory, the first model can be designed. Here the
ingenuity of the designer must be used to the maximum. The parts of
the mechanism must be arranged compactly to decrease space require-
ments, weight, and the effects of elasticity and thermal expansion, but
they should not be massed in such a way that assembly is difficult, or
repair or servicing impossible. Sometimes division of the whole ecomputer
into several independent parts is advisable. Finally, the computer can be
built and tested against specifications.

1.3. Organization of the Present Volume.—It is not possible to dis-
cuss in one volume all elements of the problem of computer design. This
book will deal principally with bar-linkage computers—specifically, with
the mathematical design of elements for such computers. Bar linkages
are mechanically very satisfactory, and computers built from them have
many important virtues, but the mathematical design of these systems
is relatively difficult and is not widely understood. There are few stand-
ard bar-linkage elements for computers; it is usually necessary to design
the components of the computer, and not merely to organize standard
elements into a complex assembly. It is hoped that the design methods
to be described here will lead to their more general use.

Bar linkages can be used in combination with the standard computing
mechanisms. For this reason, and for the contrast with the bar lLink-
ages which are to be discussed later, this volume begins with a brief survey
of some more or less standard elements of mechanical computers. Chap-
ter 2 is devoted to a general discussion of bar linkages. Chapter 3
establishes terminology and describes graphical procedures of which
extensive use will be made. Chapters 4, 5, and 6 discuss, in order of their
increasing complexity, bar linkages with one degree of freedom—gener-
ators of functions of one independent variable. Chapter 7 indicates some
mathematical methods of importance in bar-linkage design. Finally,
Chaps. 8, 9, and 10 develop methods for the design of bar-linkage gener-
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ators of functions of two independent variables—a field in which bar
linkages have very striking advantages.

ELEMENTARY COMPUTING MECHANISMS

The remainder of this chapter will give a brief survey of elementary
computing mechanisms, or ‘cells,” of more or less standard type. Dis-
cussion of bar-linkage cells will be deferred to Chap. 2.

1.4. Additive Cells.—‘“ Additive” or ‘“‘linear’ cells establish linear
relations between mechanical motions of the cell, usually shaft rotations
or slide displacements. If these are described by parameters X, X,, X3,
the cell will compute

X3=Q'X1+Q/'X2+C. (5)

Here @, @', and C are constants depending on the design of the cell and the
choice of the zero positions from which X, X, and X; are measured. By

® X,

X

S,

Fic. 1:1.—Bevel-gear differential.

proper choice of the zero positions, C can always be made to vanish; in
what follows it will be assumed that this has been done.

The bevel-gear differential (Fig. 1-1) is a well-known linear cell for
which all three parameters are rotations. The parameter X, is the rota-
tion of the shaft S, from a predetermined zero position, X; = 0; the posi-
tive direction of rotation is indicated by symbols representing the head
and tail of an arrow with this direction. The parameter X, is the rotation
of the shaft S; from a similar zero position; X3 is the rotation from its zero
position of the cage C carrying the planetary bevel gears G. The zcro
positions are not indicated in the figure.

The equation of the bevel-gear differential is

To derive this it is convenient to consider the value of X, corresponding to
given values of X; and X;. Let us consider the differential to be originally
in the position X; = X, = X3 = 0. The parameters X; and X; can then
be given their assigned values in two steps, the first a rotation of both the
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shaft S, and the cage C through the angle X3, and the second a rotation of
the shaft S, through an additional angle X; — X3 In the first step the
differential moves as a unit; the shaft S, is rotated through the angle Xj.
In the second step, the cage is stationary and the movement of the shaft
Sy is transmitted to the shaft S, with its sense of rotation reversed; the
rotation through angle X; — X; of the shaft S, causes rotation through
Xs — X, of the shaft S,. The total rotation of the shaft S; is then
X, = X3+ (X5 — X,1), from which Eq. (2) follows immediately. It is,
of course, essential that all rotations be taken as positive in the same
sense.

It is remarkable that Eq. (6) is independent of the ratio of the bevel
gearing of the differential; the essential characteristic of this type of

Fia. 1-2.—~Cylindrical-gear differential.

differential is that the gearing of the cage transmits the relative motion of
the shaft S; to the shaft S, in the ratio 1 to 1, but with reversed sense. It
is not necessary to use bevel gears in the cage to obtain this result;
cylindrical gears can accomplish the same purpose. A cylindrical-gear
differential is shown in Fig. 1-2. This differential is equivalent to the
common bevel-gear differential, except in its mechanical features. It is
flatter, and easier to construct in large numbers, but there is one more
gear mesh than in the common type; there may be more backlash and
more friction. It should be noted, however, that bevel gears are subject
to axial as well as radial forces in their bearings, and that these may also
increase friction.

The spur-gear differential shown in Fig. 1-3 has only two gear meshes,
and is quite flat. The planetary gears G in their cage C do not invert the
motion of the shaft S; when transmitting it to the shaft Ss, but can be
made to transmit it at a ratio different from 1, The equation of this
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differential is
X; =QX, 4+ (1 — @X. (7)

To prove this relation we can use the same method as before. Let us
begin by considering the differential in the zero position,

X1=X2=X3=0.

We wish to find the value of X; corresponding to given X, and X,. We
introduce the angles X, and X in two steps, first turning both the shaft

X X
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Fic. 1-3.—Spur-gear differential.
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Fia. 1-4.—Differential with axially displaced spiral gear.

8; and the cage C through the angle X,, and then the shaft S, through an
additional X; — X.. In the first step the differential is turned as a rigid
body; the shaft S, is also turned through the angle X;. In the second
step the shaft Ss is turned through Q(X; — X.); its total motion is
Xs = X: + Q(X, — X,), in agreement with Eq. (7).

If we make @ = Q' = 0.5 by proper choice of the gear ratios, we can
obtain a differential equivalent to the bevel-gear differential. The fact
that the free choice of Q gives to this differential a larger field of applica-
bility does not necessarily mean that this differential should be preferred
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to those with @ = 0.5; it is convenient to use differentials with @ = 0.5
as prefabricated standard elements.

A differential with axially displaced spiral gear is shown in Fig. 1-4.
The parameter X, which measures the axial displacement of the spiral
gear and the pin Py, is variable only within finite limits. The mechanical
structure of this differential is, however, much simpler than that of the
differentials already mentioned, for which all parameters can change with-
out limitation. The equation of this differential is

X3=X1+—2—:rn—nX2, ®

where 7 is the number of threads per inch along the axis of the spiral gear
on the shaft S, and m is the number of teeth on the gear with which it
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Fia. 1.5.—Differential worm gearing.

meshes. The helical angle of the gears should be at least 45° for smooth
action and small backlash.

The differential worm gearing shown in Fig. 1-5 is used for the same
purpose as the preceding differential, especially if the range of values of
X, corresponds to a large fraction of a revolution of the shaft S, or even
to several revolutions of this shaft. The equation of this @ “erential is

Xo= £ 2 X, + % X,  (radians) )
where ¢ is the number of teeth of the worm gear, m is the multiplicity of
the threads of the worm, and R is the radius of the worm gear.

The sign in Eqgs. (8) and (9) depends on the sense of the threads of the
spiral or worm gear.

The screw differential shown in Fig. 1-6 combines an axial translation
X1 of a screw with a translation X, of the nut N with respect to the screw;

X; = X1 + Xe. (10)
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To obtain the first translation, the pin P on which the serew turns is
displaced by X;. The rotation of the screw comes from the gear G, which
meshes with a cylindrical rack C and slides along it. The real input

X3

X,

Fﬂlz
o
24

;
N

F16. 1-6.—Screw differential.

parameter of the differential is not X, but the angle X, through which the
rack is turned. The equation of the differential is then

X3 = X1 ‘_*_‘ ]{'X4 (11)

The sign depends on the sense of the screw; k is a constant determined by
the gear ratio, the number of threads per inch on the screw, and their
multiplicity. All three parameters of this
differential have constructive limits.

The belt differential (Fig. 1-7) makes
use of the inextensibility of a belting on
several pulleys. In practice, chains,
strings, and special cables are used as belts.
The equation of the belt differential is

X:=C — 05X, — 0.5X,, (12)

where C is a constant depending on the
choice of zero points of the parameters.

The tension in the belt must not fall
below zero at any time; if it does, the belt
will sag and the equation of the differential
will not hold. To obtain positive action in the direction of increasing X3,
it is necessary to preload the belt by putting a load on the output pulley—
ior instance, by a spring that can exert a force large enough to produce the
desired action. The maximum driving force required for this differ-
ential will then be about twice the force necessary to operate it without
preloading.

The loop-belt differential (Fig. 1-8) has the belting in the form of a loop
with length independent of the position of the pulleys. The belt can then

Fia. 1.7—Belt differential.
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be preloaded (turnbuckle B) without adding to the driving force of the
differential, except by the increased friction in the bearings.

Belt differentials are some-
times used to add a large number
of parameters; they are easily
combined in batteries, as indicated
schematically in Fig. 1-9. Insuch
an arrangement the parameter X,
may have so large a range that it
is impractical to use a slide as the
output terminal. It is better
practice to use a drum (dashed

Fi1a. 1-8.—Loop-belt differential.

line in Fig. 1-9) on which the belt is wound on . and at the same time
wound off. To prevent slippage, the belt should make many turns on the
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Fre. 1.9.—Loop-belt differential for
the evaluation of

X:=C — X1 —2X: +2X; — 2X4
+ 2X;5; — 2Xs.

drum and be fastened to it; a chain
on chain sprockets may also be used
as the belt.

The above enumeration does not
exhaust the possibilities for linear
mechanical cells; there are many
variants the use of which may be
dictated by special circumstances.

As a rule, when a differential is
used in a computing mechanism, two
of its members (the input terminals)
are moved by external forces; this
results in movement of a third mem-
ber (the output terminal) which is in
turn required to furnish an appreci-
able force. If differentials were fric-
tionless, any two of their three
terminals could be used as input
terminals. In reality, only a few of
the differentials described here have
complete interchangeability of the
terminals. For instance, with the
screw differential (Fig. 1-6) it is im-
possible to have X, as the output

parameter if the helical angle of the screw is so low that self-locking of the
nut on the screw occurs; it is possible to use X, as an output parameter,
and, of course, also X;. With the differential worm gearing of Fig. 15,
X, is an impracticable output parameter.
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1.6. Multipliers.—Multipliers are computers that establish between
three parameters a relation

EX; = X1 X,, (13)

where R is a constant that depends on the type of multiplier and on its
dimensions.

The action of the slide multiplier shown in Fig. 1-10 is based on the
proportionality of the sides of two similar triangles. These are triangles
with horizontal bases, and vertices at the central pin shown in the figure:
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Fia. 1-10.—Slide multiplier.

the first has a base of length R and altitude X, the second a base of length
X, and altitude X;. Thus

R _X,
-X—l = -X—:{’ (14(1)
or
RX; = X:X,. (14b)

The figure gives a schematic rather than a practical design; the lengths of
the sliding surfaces as shown are not great enough to prevent self-locking
in all possible positions of the mechanism. These lengths determine the
space requirements for multipliers of this type; they must be relatively
large in two directions. It is difficult to make this type of multiplier
precise. The pins in slots, as shown in the figure, are mechanically
inadequate, and roller slides on rails must be used. One can not achieve
the same end by increasing the dimensions of the multiplier because the

T TR

3
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elasticity of parts comes into play, not only when the parts are operating
in a computer, but also when they are being machined.

The slide multiplier shown in Fig. 1-11 saves space in one direction.
There are fewer sliding contacts, and the slides are easier to construct.

RX3=Xy'X,
b—

X3
3
i

X,
R

XX,

0]10]

F16. 1-11.—8lide multiplier with inputs X1, X; — Xa.
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F1a. 1-12.—Intersection nomogram for multiplication z; = z; » zx.

This device cannot multiply X; and X, directly to compute RX; = XX.;
the input terminals must be given translations of X; and X, — X,. The
difference is easy to obtain if the parameters are generated as shaft
revolutions before entering the multiplier; serews can then be used instead
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of the slides shown in the figure, and the required difference can be formed
by a gear differential.

Nomographic Multipliers.—A multiplier that is structurally related to
a nomogram for multiplication will be called a “nomographic multiplier.”

Such multipliers can be derived from intersection or alignment nomograms;
the examples to be given here are related to intersection nomograms.
il
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F1a. 1-13.—An intersection nomogram for multiplication, obtained from the nomogram in
Fig. 1-12 by a projective tranaformation.
Figure 1-12 shows an intersection nomogram for multiplication in an
unusual form, the full significance of which will be made clear in the latter
part of this book. This represents the formula

Ty = XjTk. (15)

It consists of three families of lines, of constant x;, z;, and zi, respectively;
through each point of the nomogram passes a line of each family, cor-
responding to values of 2y, r;, and x; which satisfy Eq. (15). (The lines
in this particular figure are drawn for values of the z’s that are powers of
1.25; this is not of immediate importance for our discussion.) The multi-
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plier of Fig. 1-10 is structurally related to this nomogram. -The rotating
slide can be brought to positions corresponding to the radial lines in the
nomogram; the horizontal and vertical slots correspond structurally to
the horizontal and vertical lines on the nomogram, and the pin that con-
nects all slides mechanically assures a triple intersection of these lines.
The values of z;, z;, and z; corresponding to the positions of the three
slides must then satisfy Eq. (15); to complete the multiplier it is only
necessary to provide scales from which these values can be read, or, as is
done in Fig. 1-10, to provide mechanical connections such that terminal
displacements are proportional to these quantities.

By a projective transformation of the nomogram in Fig. 1-12 one can
obtain the nomogram in Fig. 1-13, where lines of constant values of the

— e
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Fia. 1-14.—Nomographic multiplier.

variables z;, z;, and z; form three families of radial lines intersecting in
three centers. The obvious mechanical analogue of this nomogram for
multiplication is shown in Fig. 1-14. Tt consists of three slides that rotate
about centers corresponding to the centers of the radial lines in Fig. 1-13;
these slides are bound together by a pin, which establishes the triple
intersections found in the nomogram, and the corresponding values of
x;, 2, and z, are read on circular scales. It will be noted that the scale
divisions are not uniform. Such nonuniform scales are of more general
use than one might expect. Often one will have to deal with variables
generated with nonuniform scales by some other computer; by proper
choice of the projective transformation one can then hope to produce a
multiplier of this type with similarly deformed scales.

1.6. Resolvers.—The resolver is a special type of multiplier. It
generates a parameter X3, and usually also another parameter X4, as a
product of a parameter X; and a trigonometric function—the sine or
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cosine—of a parameter X.. The equations are

X3 = X, sin Xz, (16a)
X4 = X, cos Xz. (16b)

The name of this device is derived from its action as a resolver of a vector
displacement into its rectangular components.

A simplified design of a resolver is shown in Fig. 1-15. In the plan
view, Fig. 1-15a, we see the materialization of a vector by a screw: the
axis of the screw points in the direction of the vector, at an angle X, to a
zero line; the length X, of the vector is established as the distance from
the pivot O on which the whole screw is rotated to a pin T on the nut of
the screw.

To obtain the components of the vector, slides are sometimes used,
as in the case of the multiplier in Fig. 1-10. In Fig. 1-15 there is sug-
gested a solution that gives much better precision and saves space.
Perpendicular shafts pass through the block B that carries the pin P.
These shafts are carried by rollers on rails; their parallelism to given
lines is well assured by gears that mesh with racks fastened to the frame.
For convenience of construction the axes of the shafts do not intersect
with each other and with the axis of the pin 7. This introduces a con-
stant term e into the displacement of the shafts—that is, it causes a dis-
placement ¢ in the effective zero positions of X;and X,.

It is of interest to note how the parameter X, is controlled from the
input shaft S; (Fig. 1-15b.). While the screw is rotated through the
angle X, on the shaft Ss, it is necessary to control the value of X, by a
gear G that rotates freely on this shaft. If such a gear is turned through
an angle proportional to X;—is held fixed when X, is constant—the
screw will spin on its axis whenever X, is changed ; the length of the vector
will be affected by change in X,, and will not represent the desired value of
X,. Ttis thus necessary to keep the screw without spin with respect to S,
when only X, is changed—to keep the gear @ moving along with the shaft
S: whenever X, is fixed. This is accomplished by the so-called ‘com-
pensating differential,”” D. As is shown in the figure, the planetary gear
of this bevel-gear differential is geared to the shaft S in the ratio 1 to 1;
the differential thus receives an input —X,;. When the input shaft S; is
rotated through X, the output shaft S; is rotated through an angle

X5 = —Xe - 2X2 (17)

By gearing the gear G to the shaft S in the ratio 2 to 1, the angle turned
by @ can be made to be

Xo = '—0.5X5 = 05X3 + Xz.

Then if S¢is stationary, Xe changes equally with X,, and the serew is not
spun; X, remains constant. If the shaft S; is turned, the gear G turns
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with respect to the shaft S; through an equal angle. The change in
X1 is then proportional to the rotation of the shaft S;:Xs = QX;, the
constant ¢ depending on gear ratios and the threading of the screw.
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Fia. 1-15.—Resolver. (a) Plan view. (b) Elevation. The teeth of the racks are omitted
. from the figures.

The design in Fig. 1-15 is so oversimplified that the resolver is sure to

be lacking in precision. In particular, the flexibility of the structure sup-

porting the screw is excessive: shaft .S, is easily bent and easily twisted.
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This can be remedied by placing the screw subassembly on a circular plate
with a large ball bearing on its circumference, and using a driving shaft of
reasonable diameter.

A better construction (but one that is not always usable) is presented
in Fig. 1-16. In the plan view, Fig. 1-16a, we observe the main difference
between the subassembly of the screw in Fig. 1-15 and the present design.
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Fia. 1-16.—Alternative resolver design. (a) Plan view. (b) Elevation.

In Fig. 1-16a the pin T is carried on an arm of radius R that rotates on a
pivot P. This pivot is placed at a distance R from the center S of the
circular plate H to which it is fastened. By rotating the arm PT', the
vector ST can be changed in length. Its direction would be changed at
the same time if it were not for a compensating rotation of the plate H.
Since the triangle SPT is isosceles the angle of rotation of ST to be com-
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pensated for is exactly half of the angle of rotation of the arm PT. To
introduce this compensation a differential is used; to change the direction
of the vector ST in a desired manner, the table H is rotated through a
second differential. The two differentials, D; and D,, are shown in Fig.
1-16b. Their function may be understood in this way. To change the
direction of the vector ST we must rotate the whole subassembly of the
plate H as a unit; we must turn the gears G; and G, by the same amounts.
These gears are geared to the cages of the planetary gears of the differen-
tials Dy, Ds, at the same ratio (1 to 1 in the figure); these also must be
turned equally. That is accomplished by turning the shaft S, and by
keeping the shaft S, stationary. To change the length of the vector ST
without turning it we have to turn the arm clockwise, for example, in the
plan view, and the plate H counterclockwise by half the amount. Thisis
accomplished by turning the shaft S;. This shaft is geared to the input
of the differential D, at the ratio 1 to 1 and to the input of the differential
D, at the ratio 3 to 1; when the shaft S, rotates, the gear G, turns three
times faster than the gear G2. To see that this gives a compensating
rotation of the plate through an angle —X when the arm PT rotates
through 2X relative to the plate H, we observe that if the gear G, were
fixed, a rotation of G, and the plate H through — X would rotate the arm
with respect to the plate also by —X. To bring it to the correct posi-
tion, 42X, it must then be rotated through an angle of +3X with respect
to the plate. To accomplish this the gear G; must be rotated through an
angle —3X, since the direction of rotation is reversed in the gear G.
Thus G: must turn in the same direction as G», but three times as fast.

1.7. Cams.—A cam is a mechanism that establishes a functional rela-
tion between parameters X; and X,:

X, = F(X,). (18)

If X, is the input parameter, X, the output parameter, it is necessary in
practice that F(X,;) be a single-valued, continuous function with deriva-
tives which do not exceed certain limits.

Plane cams exist in two principal variants, shown in Figs. 1-17 and
1-18. In the first the cam has the form of a disk shaped along a general
curve. Contact with this cam is made by a roller on an arm; the contact
is assured by tension of a spring. A cam of this type is easy to build
and has negligible backlash, but the force on.the arm is rather small in
one of the two senses of motion—not larger than the force of the spring.
In the second variant there is a slot milled into a flat surface rotating
on a pivot; contact is made by a roller carried on a slide, as shown in
Fig. 1-18. The second form does not permit use of as steep a spiral a3
does the first, since self-locking is more likely to occur.
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The cylindrical cam shown in Fig. 1-19 has a slot milled into the surface
of a cylinder; a small roller carried by a slide passes along the slot when
the cam is turned on its axis through the input angle X;. The form of the
slot is so chosen that the motion of the slide, described by the output
parameter X, has the desired character.

x, X2
/
Fig. 1-17.—Plane cam with spring Fia. 1-18.—Plane cam with groove
contact. contact.

One variant of pin gearing, as shown in Fig. 1-20, has a gear with a
special type of tooth meshing with a milled curved rack. (The milling
tool has a cutting shape identical with the shape of the teeth of the gear.)
Another form of pin gear (Fig. 1-21) has pins of special shape insertedin
a plate; these mesh with a specially formed gear. In both variants the
gear is keyed on a shaft, with freedom for lateral motion; this motion
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Fia. 1-19.—Cylindrical cam with groove Fig. 1-20.—Pin gearing with pins on gear,
contact.

of the gear is assured by the action of the curved rack on the pins on the
gear, or by a special cam constructed for this purpose.

The belt cam shown in Fig. 1-22 is a noncircular pulley or drum on
which is wound a belt, or string, or some other kind of belting. If the
number of revolutions of such a cam is to be greater than one, the string is
wound in a spiral; the shape of this spiral should assure a smooth tan-
gential winding of the string on the cams. Cams of this type can allow
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very large travels of the belt and shaft, but they are mechanically less
desirable than pin gears. They are not so safe in operation, and rather

F1g6. 1-21.—Pin-gearing with pins on the disk.

delicate, especially in the compensated form in which equal lengths of
string are simultaneously wound off and wound on.

An example of a compensated belt cam is the squaring cam shown in
Fig. 1-23. In this, two strings are wound partly on a cylinder, partly on a
cone. The winding on the cone is in X
the form of a spiral with equally 2
spaced threads; the form of the wind- _[,’ X
o, . N
ing is assured by a groove. One string = == Y
begins on the left side of the drum
and, after a number of turns, passes
on to the cone and continues in the
groove to the tapered right end of the X,
cone. The second string begins on =
the right side of the cylinder and after e s
several turns to the left passes also —] 1
onto the cone, where it continues Nual
through the groove to the left, to end
at the larger end of the cone. The
element of rotation dX; of the cone
produces a motion of the string equal
to RidX, where R, is the average Fra. 1-22.—Belt cam.
radius of the cone at the points where the string meets and leaves the cone.
The corresponding rotation of the drum is therefore dX3 = (—R.dX1)/R;,
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where R, is the radius of the drum. The radius R, is proportional to the
angle X measured from a properly chosen zero position of the shaft S;.
(This zero position 1s, of course, not practically attainable, since it would
correspond to zero radius of the cone at the point of contact.) We have
then

—dX, = "XédX‘, (19a)
2
- k 2
X, = — g5 X} (190)

if the zero point for X, is properly chosen. Here £ is the increment of the
radius R, per radian rotation of the shaft S;.

F1g. 1-23.—Compensated squaring cam,

This squaring cam does not by itself operate down to X; = 0. It can,
however, be used in a range including zero if it is combined with a differ-
ential. With

X1 = X3 + C, (20)
Eq. (19) becomes
X, = KX} + 2KCX; + K(C2 (21)
Introducing the new parameter
Xi= X, — 2KCX, + KC?, (22)
we have
X, = KX}, (23)

this holds even if X is zero or negative. The larger the negative values
of X3 to be reached the larger must be the positive constant C. The
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precision of a cam of this type can be made very high; the error may be less
than 0.02 per cent of the total travel of the output shaft S;. The rela-
tively great inertia and bulk of the device (especially when it is combined
with a differential for squaring negative numbers), limits its use to cases
where precision is essential.

Three-dimensional cams or ‘“‘camoids,” such as that shown in Fig.
1-24, are bodies of general form with two degrees of freedom—for instance,
a translation of X and a rotation X,—in contact with another body with
one degree of freedom, for instance, a translation X;. The parameter X;
will then be a function of two independent parameters, X, and X,:

X; = F(X,y, Xo). (24)

The body in contact is called the “follower’’; it may be a ball on a slide,
as shown in the figure, or an arm
rotating on a pin parallel to the main
axis of the camoid and touching the
surface of the cam. Camoids are
valuable in that they can generate any
well-behaved function of two inde-
pendent variables. They are, how-
ever, expensive to build with enough
precision, have considerable friction,
and take too much space. Bar link-
ages are always to be preferred to
camoids when it is possible to design Fre. 1-24.—Three-dimensional cam.
such a linkage.

1.8. Integrators.—Integrators are computers that have an output
parameter, X, and two input parameters, X, and X, functionally related

by

Xs — Xs0 = /X. F(X,)dX>. (25)

The simplest form of integrator gives

X2
Xs — X0 = KX:dXs. (26)

X0

The parameters X, X,, of an integrator can be varied at will; they can, for
instance, be given functions of time £. The value of the integral, as a
function of ¢, will depend on the form of these functions, and not merely
on the instantaneous values of X; and X,. Thus, unlike a function
generator, an integrator does not establish a fixed relation between the
instantaneous values of the parameters involved.
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The equations of integrators are conveniently written in differential
form; Eq. (26) becomes then

dX; = KXdX,. (27)

This is particularly convenient in schematic diagrams of complete com-
puting systems.

A common type of integrator is the friction-wheel iniegrator shown in
Fig. 1-25. The output parameter X; is generated by a friction wheel in
contact with a plane disk, the rotation of which is described by the
parameter X,. Since the motion of the friction wheel depends on friction
between the disk and the wheel, a normal force must act to maintain the
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Fia. 1-25.—Friction-wheel integrator.

frictional force at an adequate level; for this reason the disk is pressed
against the wheel by a spring. The friction wheel is transportable along
1ts axis; the distance from the axis of the disk to the point of contact is the
parameter X,;. In precision integrators the friction wheel is carried by a
fixed shaft and the rotating disk is moved with respect to the frame by the
amount X;. The equation of the integrator in the figure is

dX; = %dexg, (28)

where r is the radius of the friction wheel.

The double-ball integrator of Fig. 1-26 has the same equation as the
friction-wheel integrator; the difference between these two designs is con-
structive only. The friction wheel is replaced by two balls carried in a
small cylindrical container, as shown in the figure, or in a special con-
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F1a. 1-26.—Double-ball integrator.

Fia. 1-27.—Plan view of component solver,

25
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tainer with roller guides for the balls, to reduce friction. These balls
transfer the motion of the disk (XdX,;) to a drum of radius r, which
rotates through an angle dX; given by Eq. (28). The balls are easily
transportable, rolling along the drum, with which they are in contact
under constant pressure. This design is useful when one requires an
efficient compact computer but does not need the maximum accuracy
possible with mechanical integrators. The main source of error is the
lack of absolutely sharp definition of the distance from the axis of the
plate to the point of contact of the plate with the balls. Any lateral
freedom of the lower ball impairs the precision of the results.

The component solver shown in Fig. 1-27 is a good example of an inte-
grator of the more general type. A large ball of glass or steel is held
between four rollers placed in a square, with axes in the same plane, and
two rollers with axes parallel to that plane; the points of contact are at the
corners of a regular octahedron. (Figure 1-27 shows only five of the six
rollers.) The first four rollers have fixed axes, but the other two have
axes that are always parallel, but may assume any direction in the hori-
zontal plane. The rotation of these latter axes in the horizontal plane,
measured from a certain zero position, is the input parameter Xi; the
rotation of these rollers on their shafts is the second input parameter X3;
the rotation of any one of the four rollers on fixed axes may be taken as an
output parameter. Since rollers on parallel axes rotate through equal
angles, there are two different output parameters, X; and X, If all
rollers have the same diameter, the equations of the component solver are

dXs = cos X, dX,, (29a)
dX, = sin X,dX,. (29b)

Thus the component solver is described by Eq. (25), but not by Eq. (26).



CHAPTER 2
BAR-LINKAGE COMPUTERS

2-1. Introduction.—A bar linkage is, in the classical sense of the word,
a system of rigid bars pivoted to each other and to a fixed base. In this
volume the term ‘“bar linkage’ will denote any mechanism consisting
of rigid bodies moving in a plane and pivoted to each other, to a fixed base,
or to slides. Consideration will be limited to essentially plane mecha-
nisms because these are mechanically the easiest to construct. The
inclusion in bar linkages of rigid bodies of arbitrary form is not an essential
extension of the term, since any

rigid body can be replaced by a X
corresponding system of rigid bars. i
Similarly, the admission of slides is ’ L

not a real extension, since bar link- %
ages—in the classical sense—can —<—7—- -

be designed to apply the same &
constraints.

A link in a bar linkage is a body
connected to two other bodies by
pivots. A lever is a body connected
to three other bodies by pivots. A crank is a body pivoted to the fixed
base, and to one or more other bodies of the linkage. Figure 2-1 shows a
bar linkage that consists of a crank R, a link L, and a slide S.

Bar linkages are very satisfactory devices from a mechanical point of
view. Pivots and slides are easily constructed and have small backlash,
small friction, and good resistance to wear.

As computing mechanisms, bar linkages can perform all the functions
of the elementary function generators discussed in Chap. 1. They can-
not, however, be used to establish relations between differentials; they
cannot perform the functions of integrators. As function generators it is
characteristic. of bar linkages that they do not, generally speaking, per-
form their intended operations with mathematical accuracy; on the other
hand, they can generate in a simple and direct way, and with good approx-
imation, functions that can be generated only by complicated combina-
tions of the classical computing elements.

There are few standard bar-linkage function generators; one must
usually design a bar linkage for any given purpose. Methods for design-

ing such linkages from the mathematical point of view are the main sub-
27

X,
Fre. 2-1.—Bar linkage: a nonideal har-
monic transformer.
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ject of this book. The problem is to find a bar linkage that will generate
a given function. It must be noted immediately that in general this can
be accomplished exactly only by a linkage with an infinite number of
elements; mechanisms with a finite number of elements cannot generate
the complete field of functions. From a practical point of view, how-
ever, even the simpler bar linkages offer enough flexibility to permit solu-
tion of the design problem with an acceptably small error. The approach
to the problem must be synthetic and approximative, not analytic and
exact.

The mechanical design of bar linkages cannot be discussed in this
volume. It is of course possible to treat analytically the properties of a
given linkage: its motion, the distribution of velocities of its parts, acceler-
ations, inertia, forces. In this respect the theory of linkages has been
well developed, even in elementary texts; the kinematics of bar linkages
have been treated especially thoroughly. It is of course necessary that
the designer of linkages have knowledge of the practical properties of
these devices, even when he is primarily interested in their mathematical
design. In the present volume there will be some comment on the
mechanical features of bar linkages, but only enough to give the designer
the necessary base for reasoning when the design procedure is started.

2:2. Historical Notes.—Engineers and mathematicians have in the
past considered bar linkages primarily as curve tracers—that is, as devices
serving to constrain a point of the
linkage to move along a given
curve. The classical problem in
.- the field has been that of finding

‘T__—T a bar linkage that will constrain a
point to move along a straight
:l HIND J line. This problem was consjgid-
ered by Watt in designing his
steam engine. Watt found a
sufficiently accurate solution of
_J the problem, and it was the cost
and space required that caused the
use of a slide in his original design.
Bar linkages are now extensively
F1g. 2:2.—Bar linkages in a microscope plate  ysed in mechanical design because
holder. . . .
of their small frictional losses and
high efficiency in transmitting power—efficiency greater than that of any
gear or cam. The usefulness of bar linkages to the mechanical engineer
can be illustrated by a locomotive: its transmission contains the famous
parallelogram linkage, and the valve motions are controlled by bar
linkages of some complexity. A designer of linkage multipliers will
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recognize among these structures elements that he is accustomed to use
in his own work.

Bar linkages are used in heavy construction as counterweight linkages
and for the transmission of spring action. They also serve as elements of
fine instruments. The parallelogram linkage used to assure pure trans-
lational motion of a slide being examined by a microscope is illustrated in
Fig. 22. Springs are omitted from the diagram. The field of the micro-
scope is indicated at the center of the plate.

The problem of producing an exact straight-line motion by a bar
linkage was first solved by Peaucellier.! This was accomplished by
application of the Peaucellier inversor to the conversion of the circular
motion of a crank into a rectilinear motion. The Peaucellier inversor is
illustrated in Fig. 2-3. It consists
of a jointed quadrilateral with four
sides of equal lengths B, to the oppo-
site vertices of which there are
jointed two other bars of equal —=X
lengths A; these latter bars are
themselves joined at their other ends.
: Three jOintS of this structure neces- Fia. 2-3.—S8ix-bar Peaucellier inversor.
sarily lie on the same straight line, The solid lines illustrate the case B < 4,
and the distances X, and X, between the dashed lines the case B > 4.
these joints vary inversely with each other. It will be noted that X, is
the sum of the lengths of the bases of two right triangles of altitude T and
hypotenuses A and B respectively, whereas X is the difference of these
base lengths. We have then

X, = AT - T + /B = T%, (1a)
X, =AT—T - /BT (1)

In these equations 4, B, T, and the square roots are necessarily positive.
On multiplying together Eqgs. (la) and (1b) we obtain

X, X: = A? — B, (2a)

or

A2 —_ B2
X,
There are two variants of this inversor, with A greater than B or with

B greater than A. If Bis greater than A (dashed lines in Fig. 2-3), X, ig

always negative; there is no possibility of having X, equal X,. If 4 is

greater than B (solid lines in Fig. 2-3), it is possible to have

Xl = X2 = (Az - B2)”.

1 A concise summary of work in this field, by R. L. Hippisley, will be found under
Linkages, in the Encyclopedia Britannica, 14th ed.

X 2 = (2b)
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At this point the mechanism exhibits an undesirable singularity; the
joints P and @ of Fig. 2-3 become coincident, and self-locking of the
device may occur. These two forms of the Peaucellier inversor also
differ in their useful ranges. These are

NVAT-B'< X, <A+B, ifA>B, (3a)
B-A<X;<A+B,  ifA<B. (3b)

The freedom from self-locking and the greater range make it desirable
to have B greater than A. Figure 2-4 shows the Peaucellier inversor in a
form suitable for use as a computer.

Fia. 2-4.—Three-bar Peaucellier inversor. Fig. 2:5.—The Hart inversor.

Another inversor has been devised by Hart.!

The Hart inversor (Fig. 2-5) is essentially a bar-linkage parallelogram
with one pair of bars reflected in a line through opposite vertices. Let any
line OS be drawn parallel to a line UV through alternate vertices of the
quadrilateral. It can be shown that this will intersect adjacent bars of
the linkage at points O, P, @, that remain collinear as the linkage is
deformed; furthermore, the distances X; = OQ and X, = OP will vary
inversely with each other.

There have been described linkages for the tracing of conic sections,
the Cassinian oval, the lemniscate, the limagon of Pascal, the cardioid, and
the trisectrix; indeed it is theoretically possible to describe any plane
curve of the nth degree in Cartesian coordinates z and y by a bar linkage.?
Linkages for the solution of algebraic equations have also been devised.?

1 H. Hart, “On Certain Conversions of Motion,” Messenger of Mathematics, 4, 82
(1875).

* A, Cayley, ‘On the Mechanical Description of a Cubic Curve,” Proc. Math. Soc.,
Lond., 4,175 (1872). G. H. Dawson, ‘‘ The Mechanical Description of Equipotential
Lines,” Proc. Math. Soc., Lond., 6, 115 (1874). H. Hart, ‘‘On Certain Conversions of
Motion,” Messenger of Mathematics, 4, 82 and 116 (1875); “On the Mechanical
Description of the Limagon and the Parallel Motion Deduced Therefrom,” Messenger
of Mathematics, 6, 35 (1876); ‘‘On Some Cases of Parallel Motion,” Proc. Math. Soc.,
Lond., 8,286 (1876-1877). A. B. Kempe, ‘‘On a General Method of Describing Plane
Curves of the nth Degree by Linkwork,” Proc. Math. Soc., Lond., T, 213 (1875); “On
Some New Linkages,” Messenger of Mathematics, 4, 121 (1875). W. H. Laverty,
‘“Extension of Peaucellier’s Theorem,” Proc. Math. Soc., Lond., 6, 84 (1874).

? A. G. Greenhill, *‘Mechanical Solution of a Cubic by a Quadrilateral Linkage,”
Messenger of Mathematics, b, 162 (1876). A. B. Kempe, '‘On the Solution of Equa-
tions by Mechanical Means,” Messenger of Mathematics, 2, 51 (1873).
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Analytical studies! have been made of the “three-bar motion” of a
point C rigidly attached to the central link AB of a three-bar linkage
(Fig. 2:6). Three-bar motion is very useful in the design of complex
computers, and will be discussed in Sec. 10-4.

To complete this survey of the bar-linkage
literature in English, it will suffice to mention the
papers of Emch and Hippisley on closed linkages.?

2-3. The Problem of Bar-linkage-computer
Design.—Tt is only recently that much attention
has been paid to the problem of using bar linkages  ¥Fi6. 2:6.—Three-bar
. . . . . linkage with point
in computing mechanisms. The literature in the |isdly attached to the
field is especially restricted. The author knows of central bar.
only one published work that employs the synthetic approach to bar-
linkage computer design®—and this in a more restricted field than that of
the present volume.

The basic ideas in the synthetic approach to bar-linkage design are
simple, but quite different from the ideas behind the classical types of
computers. Bar linkages can be characterized by a large number of
dimensional constants, and the field of functions that they can generate
is correspondingly large—though not indefinitely so. Given a well-
behaved function of one independent variable, one should be able to
select from the field of functions generated by bar linkages with one degree
of freedom at least one function that differs from the given function by a
relatively small amount. The characteristic problem of bar-linkage
design is thus that of selecting from a family of curves too numerous and
varied for effective cataloguing one that agrees with a given function
within specified tolerances.

The presence of a residual error sets bar linkages apart from other
computing mechanisms. The error of a computer of classical type arises
from its construction as an actual physical mechanism, with unavoidable
imperfections. It is possible to reduce the error to within almost any
limits by sufficiently careful design—as, for instance, by enlarging the

1A. Cayley, ““On Three-bar Motion,” Proc. Math. Sec., Lond., T, 136 (1875). R.
L. Hippisley, “A New Method of Describing a Three-bar Curve,” Proc. Math. Soc.,
Lond., 15, 136 (1918). W. W. Johnson, ‘“On Three-bar Motion,”” Messenger of Mathe-
matics, 5, 50 (1876). 8. Roberts, “On Three-bar Motion in Plane Space,”” Proc. Math.
Soc., Lond., T, 14 (1875).

* A, Emch, “Illustration of the Elliptic Integral of the First Kind by a Certain
Link-work,” Annals of Mathematics, Series 2, 1, 81 (1899-1900). R. L. Hippisley,
*Closed Linkages,” Proc. Math. Soc., Lond., 11, 29 (1912-1913); “Closed Linkages and
Poristic Polygons,” Proc. Math. Soc., Lond., 18, 199 (1914-1915).

3 Z. 8h. Blokh and E. B. Karpin, “Practical Methods of Designing Flat Four-sided
Mechanisms,” Izdatelstvo Akademie nauk SSSR, Moscow, Leningrad (1943). E. B.
Karpin, “Atlas of Nomograms,” Izdatelstvo Akademie nauk SSSR, Moscow, Lenin-
grad (1043).
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whole computer. In bar linkages there is usually a residual error that
cannot be eliminated by any care in construction, an error that is evident
in the mathematical design of the device, as well as in the finished product.
This error will be called “structural error” because it depends only on the
structure of the computer, and not on its size or other mechanical proper-
ties. Reduction of structural error requires a change in the structure of
the computer—usually the addition of parts. The great number of
adjustable dimensional constants gives greater flexibility and extends the
field of functions that the linkage can generate; from this larger field of
functions one can then select a better approximation to the given function.

The fact that bar linkages can be used to generate functions of a large
class has been known for many years, and has been used (instinctively,
rather than with a full development of the theory) by designers of mecha-
nisms. The field of functions that can be generated by some simple bar
linkages has been analytically described. This, however, represents only
the easier half of the problem; what one needs is to describe the field of
functions that can almost be generated by a given type of linkage. The
first attempts to solve this problem for one independent variable have
been tabular or graphical. For very simple structures it is possible to
devise graphs that allow one to determine whether a given function can be
generated approximately by such a structure, and what structural error
is inevitable. These methods are practicable if the linkage can be
specified by means of only two dimensional parameters—that is, if the
field of functions depends upon only two adjustable parameters. Such
graphical methods are difficult or are necessarily incomplete if the field of
functions depends upon three adjustable parameters. Such a procedure
can hardly be attempted when four or more dimensional parameters are
involved.

The design methods presented in this book are in many cases based
on a graphical factorization of the given function into functions suitable
for mechanization by simple linkages; the elements of the mechanism
designed in this way can then be assembled into the desired complete
linkage. By such methods it is possible to design linkages having a
great many adjustable parameters, but the solution obtained cannot be
claimed to be the best possible. Usually it is easy to apply these methods
to find bar linkages that have errors everywhere within reasonable
tolerances. This is ordinarily sufficient for practical purposes.

2-4, Characteristics of Bar-linkage Computers.—The special proper-
ties of bar-linkage computers may be summarized as follows.

Advantages.

1. Bar linkages occupy less space than classical types of computers.
2. They have negligible friction.
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They have small inertia.

They have great stability in performance.

5. Their complexity does not necessarily increase with the complexity
of the analytical formulation of the problem.

6. They are easy to combine into complex systems.

7. They are relatively cheap.

bl o

Disadvantages.

Bar linkages usually possess a structural error.

. The field of mechanizable functions is somewhat restricted.

. The complexity of the linkage increases with decreasing tolerances.

. Linkage computers are relatively difficult to design. The difficulty
of the design procedure increases with increasing complexity and
decreasing tolerances.

5. The travel of the mechanism is usually limited to a few inches.

Backlash error and elasticity error must be reduced by careful

construction: the use of ball bearings is essential, and rigidity of the

structure perpendicular to the plane of motion must be assured.

The design should be such that mechanical errors are less than the

assigned tolerances for structural error.

W

Bar linkages can attain extensive use as elements of computers only as
efficient methods of design are established. The complexity and difficulty
of the design procedure depends largely on the nature of the given func-
tion. It is usually easy to design a linkage with a structural error that
does not exceed 0.3 per cent of the whole range of motion of the computer.
It becomes relatively laborious to reduce the structural error below 0.1 per
cent. If the tolerances are below 0.1 per cent—as a typical value—
alternatives to the use of a bar linkage should be explored.

Bar linkages can advantageously be combined with cams when the
tolerated error is small and a bar linkage alone would be excessively com-
plex. For instance, if a given function of one independent variable were
to be mechanized with an error of not more than 0.01 per cent, it might be
desirable to mechanize this function by a simple bar linkage with an error
of, for example, 1 per cent, and to use a cam to introduce the required
correction term. Since this corrective term represents only 1 per cent of
the whole motion of the linkage, it need not be generated with very high
precision; for instance, if the working displacement of the cam is to be
1in., it can be fabricated with a tolerance as rough as 0.01 in.

It is a feature of bar-linkage computers that they can be used to
generate functions of two independent variables in a very direct and
mechanically simple way. Methods for the design of linkages generating
functions of three independent variables are not now available when it is
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not possible to reduce the problem to the mechanization of functions of
one or two independent variables; there is, however, some hope that
practically useful methods can be found.

Bar-linkage computers have great advantages when feedback is to
be used in the design of complex computers. In computers of the classical
type, feedback motion must be a small fraction of the total output motion.
Linkage computers can, however, operate very close to the critical feed-
back—that is, the degree of feedback at which the position of the mecha-
nism becomes indeterminate.

2-6. Bar Linkages with One Degree of Freedom.—Bar linkages with
one degree of freedom serve the same purpose as cams; they may be
called “linkage cams.” The parallelogram linkage of Fig. 2-2 and the
linkage inversors have motions expressed accurately by very simple
formulas, but they are not generally useful in the mechanization of given
functions. For this purpose, the following bar linkages are much more
interesting,.

The harmonic transformer, shown in Fig. 21, establishes a relation
between an angular parameter X, and a translational parameter X,. Itis
convenient to disregard variations in the form of this relation due to
changes in scale of the mechanism—to consider as equivalent two geo-
metrically similar mechanisms. The field of functions

X» = F(Xy) (4)

generated by the harmonic transformer then depends upon two ratios of
dimensions: L/RE and E/R, the ratios to the crank length of the link
length and the displacement of the crank pivot from the center line of the
slide. As L is increased from its minimum value, the plot of X, against
X1 changes (in a typical case) from an isolated point to a closed curve,
then to a sinusoid, and finally, in the limit as L approaches infinity, to a
pure sinusoid. From a practical point of view, the pure sinusoidal form is
reached for links short enough for practical use. In the limiting case,
L = w, the equation of the harmonic transformer is

X, = Rsin X, + C. (5)

Such a harmonic transformer will be called “ideal.”’

Only rarely is the complete range of motion of a harmonic transformer
used. When the range of the parameter X, is limited to X1, < X; < Xy»
and the functions defined within these restricted limits are taken as ele-
ments of a new functional field, there is obtained a four-dimensional
functional field depending on X, and Xy as well as on L/R and E/R.
Methods for the design of harmonic transformers will be discussed in
Chap. 4.
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The three-bar linkage shown in Fig. 2-7 consists of two cranks pivoted
to a frame and joined at their free ends by a connecting link. As a
computer, this serves to ‘ compute’ the parameter X, as a function of
the parameter X;. The linkage itself is described by four lengths: A4, B,
As, Bs. The field of functions generated by this type of linkage is only
three-dimensional, because two geometrically similar mechanisms estab-

F1a. 2:7.—Three-bar linkage. F1a. 2:8,—Three-bar linkage modified by
eccentric linkage.

lish the same relation between X; and X,. The field of functions thus
depends on three ratios—for example, B,/A,, As/Ay, and B;/A,. TUsu-
ally only a part of the possible motion of the mechanism is used. Limits
of motion can be assigned for X; or X,, though, of course, not independ-
ently for the two parameters; for instance, one may fix X, < X; < Xia.
This increases the number of independent parameters by two; the field of
functions generated by a three-bar linkage operating within fixed limits

-

.
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\

Stationary ‘/I'/
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F16. 2-9.—Harmonic transformer modified by eccentric linkage.

is five-dimensional. In Chap. 5 we shall see how to design a three-bar
linkage for the approximate generation of a given function.

The eccentric linkage is not a bar linkage, but is so conveniently used in
connection with bar linkages that it should be mentioned here. Figure
2-8 shows a three-bar linkage modified by the insertion of an eccentric
linkage. One crank of the three-bar linkage carries a planetary gear that
meshes with a gear fixed to the frame. The central link is then pivoted
eccentrically to the planetary gear, rather than to the crank itself. Link-
ages of this type will be discussed in Sec. 7-9, where their importance will
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Fia. 2:10.—Double three-bar linkage generating the logarithmie function.
be explained. Another important application of the eccentric linkage isin
the modification of harmonic transformers, as illustrated in Fig. 2-9. 1tis

Fia. 2:11.—Bar linkage with two degrees of
freedom.

possible to choose the constants of
the eccentric linkage in such a way
that the linkage output is an
almost perfect sinusoid, even
though the length of the link L is
relatively small.

Combinations of these linkages
to be discussed in this book are
the double harmonic transformer
(Sec. 4-9 and following), harmonic
transformers in series with three-

bar linkages (Sec. 8-1 and following), and the double three-bar linkage
(Sec. 8:8). Figure 2-10 shows a double three-bar linkage that generates
the logarithmic function through the range indicated in the figure.
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2-6. Bar Linkages with Two Degrees of Freedom.—Bar linkages with
two degrees of freedom can be used in the generation of almost any
well-behaved function

X3 '——-F(X], Xz) (6)

of two independent variables. They provide a mechanically satisfactory
substitute for three-dimensional cams, which have many disadvantages

and are to be avoided if possible. ¥
1

Figure 2-11 shows a linkage with
two degrees of freedom, which
consists of three cranks connected
by two links and a lever. The {
lever will degenerate into a simple 7L
link if the pivots A and B are b
superposed; the resulting struc- & SN l(% X; D
ture of three links jointed at a +— ——k ———1%
. . . e @& oy Rz
single pivot will be called a “star F—— e L
linkage.” Its properties are dis- ‘ Y- -8, | &
cussed in Chap. 9.

The bar-linkage adder shown X;

in Fig. 2-12 consists of essentially
the same parts as the linkage of
Fig. 2-11, except that slides are used instead of cranks to constrain the
links. The dimensions obey the simple relation

F1a. 2-12.—Bar-linkage adder.

4L B0 @

It is easy to show that when this proportionality holds, the three pivots
Py, P,, and P; lie on a straight line. This device can, therefore, be used
to mechanize any alignment nomogram that consists of three parallel
straight lines; in particular, it can be used to mechanize the well-known
npmogram for addition. If X, X, and X, are three parameters measured
along these lines in the same direction from a common zero line, then

(A1 + 43) X5 = A Xy + A X, ®

This bar linkage is free from structural error.

In contrast to the adders, bar-linkage multipliers do not perform the
operation of multiplication exactly, but with a small error; the equation of
such a multiplier is

RXs = X1Xz + 3, (9)

where 8, the error of the multiplier, is a function of the two independent
parameters X, and X,. The design of multipliers will be discussed in
Chap. 9; a much simplified explanation of the principle will be given here.
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Figure 2-13 shows the essential elements of one type of multiplier.
Three bars of equal lengths, B, = R, = R; = 1, are pivoted together.
The first is pivoted also to the frame at the point O, the third to a slide
with center line passing through 0. If the joints 4; and A, are placed
at distances X; and X, from the center line of the slide, the distance
O8S = D will be exactly

D=vi=Xi-Vi-G-Xy+vi-X o)

Expanding in series the terms on the right, one obtains

X3s=1-D = XX, +‘%X1X§ - -}X%X% +%X§X2 = ) (11)

where X, is the displacement of the pivot 8 from the position S, which it
occupies when X; = X, = 0 and
the three links are coincident. Tt
is evident that X; is equal to the
product XX, to the approxima-
tion in which the terms of fourth
and higher degrees can be neg-
lected in comparison with the
term of the second degree. For
sufficiently small values of X; and
Fia, 2-13.—Element§ _of a bar-linkage X, this mechanism is thus a
multiplier. .

multiplier for these parameters.
Such a multiplier is not practical, however, because of its small range of
motion. If the error in the multiplication is to be kept below 1 per cent,
it is necessary to keep X1, X» £ 0.2. [If X, = X, = 0.2, then

X;= (02?24 3024+ « - -,

and the fractional error is almost exactly one per cent.] Under these
conditions, however, one has X; = 0.04, an impracticably small range of
motion. .

There are in principle two ways to improve this multiplier. With
either method it is necessary to make the structure more complicated—to
add new adjustable parameters. One possible arrangement is indicated
in Fig. 2:-14. Here the parameter X, is a displacement of a slide (of
adjustable position) that controls the position of the joint A, through a
link of adjustable length Ls; X; becomes an angular parameter, the angle
turned by a crank with adjustable length and pivot position.

With the first method, the output parameter X; is expressed in
terms of X, and Xy, in the form of a series with coefficients which depend
on the adjustable dimensions of the mechanism. These dimensions can
then be s0 chosen as to cause the terms of the fourth degree in X; and X,




SEc. 2:6] BAR LINKAGES WITH TWO DEGREES OF FREEDOM 39

to vanish. In this way, the multiplier can be made more accurate for
small values of X; and X, and the domain of useful accuracy sub-
stantially increased. Toward the limits of this domain, however, the
inaccuracy of the multiplier will
increase very rapidly.

The second method for im-
proving the multiplier—that
followed in this book—can be indi-
cated only very roughly at this
point. It involves comparison of
the ideal product and the function
actually generated by the multi-
plier over the entire range of ]
motion, and adjustment of the
dimensional constants of the sys-
tem in such a way that the error of the mechanism is brought within
specified tolerances everywhere within this domain. To see in principle
how this can be done, let us consider the mechanism of Fig. 2:13. Let
X; and X, be given a series of values that have the fixed ratio

X ,
Yj = X} (12)

——————D

Fia. 2:14.—Modified bar-linkage multiplier.

If this linkage were an exact multiplier, the pivot 4. would indicate always
the same value of X,; it would move along a straight line at constant
distance X from the line of the slide. Actually, the pivot A will describe
a curve that is tangent to this straight line for small values of X, and X,
but will diverge from it as these parameters increase. To each value of
X, there will correspond another curve; the curves of constant X, form a
family, each of which can be labeled with the associated value of this
parameter. Now we can make this muiltiplier exact if we can introduce
a constraint which, for any specified value of X5, will hold the pivot A4,
on the corresponding curve of this family. For example, if these curves
were all circles with the same radius L, and centers lying on a straight
line, it would be possible to use the type of constraint illustrated in Fig.
2-14. The X,-slide could then be used to bring the pivot A; to the center
of the circle corresponding to an assigned value of X, and the pivot
A, would stay on that circle, as required. Actually, the curves of con-
stant X, will not form such a family of identical circles. It will, however,
be possible to approximate them by such circles in a way which will split
the error and bring it within tolerances held fairly uniformly over the
whole domain of action. Unlike the multipliers designed by the first
method, a multiplier thus designed will not have unnecessarily small errors
in one part of the domain and excessively large errors in another part.



40 BAR-LINKAGE COMPUTERS [Sec. 2.7

This concept of multiplier design must be very greatly extended before
it can lead to the design of satisfactory computers. A powerful guidein
beginning the work is provided by the idea of nomographic multipliers,
already discussed in See. 1-5. It is possible to design approrimate inter-
section nomograms for multiplication that have as their mechanical
analogues bar linkages with two degrees of freedom. For instance, Fig.
8:14 shows a nomogram for multiplication obtained by topological trans-
formation of the nomogram of Fig. 1-12; it consists of two families of
identical circles and a third family of curves that can be very closely
approximated by a family of identical circles. This nomogram cor-
responds to the bar-linkage multiplier illustrated in Fig. 815, which, on
improvement of its mechanical features, takes on the form shown in Fig.
8:16. The design techniques to be described in Chaps. 8 and 9 make it
possible to design multipliers with large domain of action and good
uniformity of performance through this domain.

Multipliers can be used to perform the inverse operation of division;
that is, they can be used to evaluate X, = X;3/X1. It is, of course,not
possible to divide by zero; when a multiplier is used in this way X, will
never pass through zero. It is therefore useless to attempt to reduce to
zero the error of such a multiplier for values of X very near to zero; it
is also undesirable to attempt to reduce the errors of the device for nega-
tive values of X; when only positive values can be introduced. For this
reason three types of multiplier may be distinguished.

1. Full-range multipliers, for which both input parameters can change
signs.

2. Half-range multipliers, for which only one parameter can change
signs.

3. Quarter-range multipliers, for which neither input parameter can
change signs.

Dividers may be divided into two types.

1. The plus-minus type, for which the numerator may change sign.
2. The single-sign type, for which all-parameters have fixed signs.

An example of a practical full-range linkage multiplier is shown in Fig.
8:16; a half-range multiplier is shown in Fig. 9-15.

2.7. Complex Bar-linkage Computers.—The elementary linkage cells
already described may be combined to form complex computers. Since
simple linkages can add, multiply, and generate functions of one and two
independent variables, bar-linkage computers can solve any problem that
can be expressed in a system of equations involving only these operations.
The field of application of bar-linkage computers is quite large; they
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are especially useful if the computer must be light, as when it is to be
carried in aircraft or guided missiles.

An important feature of bar-linkage computers is the ease with which
the cells can be assembled into a compact unit. It is natural to spread
the parts of the computer out in a plane, to produce a rather flat mecha-
nism with its parts easily accessible. The connections between cells
are provided by shafts or connecting bars.

There is a simple trick that makes the connection of linkage cells even
easier, and the structure of some cells less complex. The simplification
of linkage adders is a characteristic x
example of this trick. The bar-link- |, =— Ly B
age adder shown in Fig. 2:12 has no
structural error. Any deviation from
the principle of this design is likely to
lead to a structural error; it is, how-
ever, possible to change the principle
in such a way that the structural error
is negligibly small. For instance, if
the links B; and B, are very long,
their lengths can be chosen at will without appreciably affecting the
accuracy of the addition. Figure 2-15 shows such an approximate adder;
its equation is

F16. 2:15.—Bar-linkage adder (approxi-
mate).

(A4 A)Xs ~ A1 X1 + A.X,. (13)

The links L, and L, must be so long that they lie nearly parallel to the lines
of the slide, but they need not be exactly parallel to each other. The
action of this device depends upon the essential constancy of the projec-
tion of the lengths of these bars along the line of the slides. Let X4, X},
and X3 be defined as the distances of the pivots Py, P,, and P; from some
zero line perpendicular to the line of the slides. One then has, exactly,

(A1 + A9 X5 = A X7 + A.X;. (14)

Now let 8, be the angle between the bar L, and the line of the slides.
Then

Xl =X’1+L1 CcOos 01+C, (15a)

= X7 — Li(1 — cos 6;) + (C + L,). (15b)

Except for an additive constant (which can be reduced to zero by proper
choice of the zero point), X{ and X, differ only by the variable term
Li(1 — cos 81). As L, is increased, 6; decreases with 1/L;, (1 — cos 8,)
decreases with 1/L%, and Li(1 — cos §,) decreases with 1/L;. Thus, by
making L, large and properly choosing the zero point, one can make X,
and X differ by a negligibly small term. In the same way X, can be
made negligibly different from X7; X; and Xj are identical. Equation
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(13) follows as an approximation to Eq. (14). If 6, is kept less that
0.035 radians (about 2°) the difference between X and X{ will be about
0.0006 L;. Thusif the bars deviate from parallelism with the slides by no
more than +2° during operation of the adder, the resulting error in the
output will not exceed 0.06 per cent of the total length of the bars.

If the lengths of the bars in approximate adders are great enough, it is
even immaterial whether the slides move along straight lines; the essential

e

-
X,
Fig. 2:16.—Combination of approximate adders.

thing is that the parameters be measured as distances from a zero line.
It is, therefore, possible to connect adding cells through long connecting
bars, and to omit some of the slides that would appear in the standard
construction. Fig. 2:16 shows a combination of three adding cells that
will solve (approximately) the equations

(Al + A2)X3 = A1X1 + AzXz,

(D4 + Ds)X1 = DX, + D5X5, (16)

(Es 4+ Ee)X7 = EsXs + EsXo.




CHAPTER 3
BASIC CONCEPTS AND TERMINOLOGY

The present chapter will define the terminology to be employed in
discussing bar-linkage design and introduce some coacepts with wide
application in the field, Of particular importance are the concepts of
“homogeneous parameters’’ and ‘“‘homogeneous variables,” and a graphi-
cal calculus used in discussing the action of computing mechanisms in
series.

3-1. Definitions. Ideal Functional Mechanism.—Any mechanism
can be used as a computer if it establishes definite geometrical relations
between its parts—that is, if it is sufficiently rigid and free from backlash,

Zero
position

Fia. 3-1.—Crank terminal. Fig. 3-2.—Slide terminal.

slippage, or mechanical play. In the following discussion we shall be
concerned only with such ideal functional mechanisms.

Terminals.—The terminals of a computing mechanism are those ele-
ments that, by their motions, represent the variables involved in the
computation. The motion of all terminals is usually specified with
respect to some common frame of reference. If the position of a terminal
is controlled in order to fix the configuration of the mechanism, it may be
called an “input terminal”; if its position is used in controlling a second
mechanism, or is simply observed, it may be called an “ output terminal.”
A terminal may be suitable for use only as an input terminal, or only as an
output terminal, or in either way, according to the nature of the mechanism.

43
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Terminals that are mechanically practical are of two kinds:

1. Crank or rotating-shaft terminals (Fig. 3-1), which represent a
variable by their angular motion.

2. Slide terminals (Fig. 3-2), which represent a variable by a linear
motion.

Parameters.—A parameter is a geometrical quantity that specifies the
position of a terminal. With a crank terminal, it is usually the angular
position of the terminal with respect to some specified zero position; with a
slide terminal, it is usually the distance of the slide from a zero position.
Parameters may be defined in other ways— for instance, as the distance
of aslide terminal from some movable element of the mechanism—but such
parameters are less generally useful than those just mentioned.

An input parameter describes the position of an input terminal, an
output parameter that of an output terminal.

Linkage Computers.—A linkage computer establishes between its
parameters, X;, X,, . . . X,, definite relations of the form

Fr(Xl,Xz,"'X¢)=O; T=1,2,"‘, (1)

which involve only these parameters and the dimensional constants of the
mechanism. With more general types of mechanisms these equations of
motion may also involve derivatives of the parameters. Such mecha-
nisms are useful in the solution of differential equations, but they will be
excluded from our future considerations; we shall be concerned only with
linkage computers, which generate fixed functional relations between the
parameters.

To describe the configuration of linkage computers with n degrees of
freedom, one must in general specify the values of n input parameters,

X1, Xs, . . . X4 The values of any number of output parameters can
then be expressed explicitly in terms of these n parameters:
Xow =G (Xq, Xo. « + - X,), r=12 - m. (2)

Domain.—The parameters of a computing mechanism cannot, in
general, assume all values. The limitations may arise from the geometri-
cal nature of the mechanism (a linear dimension will never change without
limit) or from the way in which it is employed. To each possible set of
values of the input parameters X, . . . X,, there corresponds a point
(X, Xo, . . . X,) in n-dimensional space; to all sets of values that may
arise during a specific application of the mechanism, there corresponds a
domain in n-dimensional space, which will be referred to as the “domain”
of the parameters. It must be emphasized that the domain of the param-
eters is not necessarily determined by the structure of the mechanism,
but by the task set for it.
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In the most general case, the domain of the input parameters may be of
arbitrary form—except, of course, that it must be simply connected,
since all parameters must change continuously. In such cases the values
posgible for any one parameter may depend on the values assigned to other
parameters. A mechanism will be said to be a ‘‘regular mechanism’
when each input parameter can vary independently of all others, between
definite upper and lower limits,

Xim £ Xi £ Xin, t=1,2 -"-n, (3)
which define the domain of the parameter. With angular parameters,
neither of these limitsis necessarily finite: it is possible tohave X; = — w0,
or X.'u = + %,

The output parameters of a regular mechanism will vary between
definite (though not necessarily finite) limits as the input parameters
take on all possible values. These limits serve to define a domain for
each output parameter. Although the input parameters vary inde-
pendently through their respective domains, this is not always true of the
output parameters.

Travel—The range of motion of a terminal is called its “travel.”
This is

AX; = Xiy ~ Xim, 4)

both for input and output terminals,

Variables.—The term ‘“variable” will denote the variables of the
problem which the computing mechanism is designed to solve. A varia-
ble will be associated with each terminal of a mechanism, an input variable
with an input terminal, an output variable with an output terminal. To
each value of a variable there will correspond a definite configuration of
the terminal; each variable, then, will be functionally related to a param-
eter of the mechanism:

Ty = d)‘(X.) 1 = 1, 2, ot (5)

It is important to keep in mind the distinction between parameters,
which are geometrical quantities measured in standard units, and the
variables of the problem, which are only functionally related to the param-
eters. In this book, variables will be denoted by lower-case letters,
parameters by capitals.

Scales.—The value of the variable corresponding to a given configura-
tion of a terminal can be read from a scale associated with that terminal.
The calibration of this scale is determined by the form of the functional
relation between z; and X;. If z;is a linear function of X; the scale will
be even—that is, evenly spaced calibrations will correspond to evenly
spaced values of ;. Such a scale may also be referred to as “linear,”
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in reference to the form of the functional relation represented. (This term
does not describe the geometrical form of the scale, which may be circular.)
A linear terminal is a terminal with which there is associated a linear
scale.

Range of a Variable—As a parameter changes between its limits,
X.m and X, the agsociated variable will also change within fixed, but not
necessarily finite, limits:

Tim = X S Tinm. (6)
In the case of a regular mechanism, this may be referred to as the
“domain’ of the variable; its range is

Az = Zim — Tim. (7

Mechanizaizon of a Function.—An ideal functional mechanism estab-
lishes definite relations between its parameters:

F"(Xllel...):O! 7‘=1,2,"'. (8)

It may be said to provide ‘“‘a mechanization’ of these functional relations
within the given domain of the independént parameters.

Such a mechanism, together with its associated scales, similarly pro-
vides a mechanization of functional relations,

fl@y, 2y 02 ) =0, r=12 """, 9)

between the variables x;, within a given domain of the independent varia-
bles. The forms of these relations may be derived by eliminating the
values of the parameters X; between Eq. (8), which characterizes the
mechanism, and Eq. (5), which characterizes the scales.

1 2 3 45
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F1a. 3-3.—Input scale.

If the output variables are to be single-valued functions of the input
variables, the input parameters must be single-valued functions of the
input variables, and the output variables must be single-valued functions
of the output parameters; it is not, however, necessary that the inverse
relations be single-valued. Thus an input scale may have the form shown
in Fig. 3-3, and an output scale that shown in Fig. 8-4, but not the reverse.

Linear Mechanization.—A mechanization of a relation between varia-
bles will be termed a “linear mechanization” if all scales are linear.
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A nonlinear mechanization of a given function may be useful when
input variables are set by hand, and only a reading of the output variables
isrequired. When a computing mechanism is to be part of a more com-
plex device, it is usually necessary that the terminals have mechanical
motion proportional to the change in
the associated variable—that is, a linear
mechanization of the function is needed.
For instance, if one has only to com-
pute the superelevation angle for an
antiaircraft gun it may be quite satis-
factory to read this on an unevenly
divided scale. If, however, one wishes
to use the computer to control directly
the sight on a gun, then a linear mecha~
nization of the superelevation function
will be required.

It is a trivial matter to design a
nonlinear mechanization of a function
of one independent variable. One
requires only a single pointer, serving
both as input and output terminal, to indicate corresponding values of
input and output variables as parallel scales (Fig. 3-5). For this reason
the term mechanization as applied to functions of a single independent
variable will always denote linear mechanization; a distinction will be
made between linear and nonlinear mechanization only in the case of
linkages of two or more degrees of freedom.

F16. 3-4.—Output scale.

1
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F16. 3-5.—Nonlinear mechanization of a function of one independent variable.

3-2. Homogeneous Parameters and Variables.—Homogeneous vari-
ables and parameters are very useful tools in the design of individual
computing linkages, and also in the drawing up of schematic diagrams for
complex computers. They are defined only for variables and parameters
which vary within finite limits.

Associated with each variable z; having a finite range Az; is a homo-
geneous variable defined by

Zi — Tim

by = —— (10)-

Zixr — Tin
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As z; varies from its lower to its upper bound, %; varies linearly with it,
from 0to 1. Theinverseform of Eq. (10) may be written

i = Tim + hiAz, 1

Another homogeneous variable, “complementary to h;,” is defined by

o Tim — X
hi = Tiv — :E.-,,.’ (12)
or by
hi + ki = 1. (13)

In the same way, there are associated with each parameter X;, having
a finite travel AX;, two complementary homogeneous parameters,

Xt' — Xim
H.-_— Xw =X (14)
H =1-H, (15)
which change linearly with X; between bounds 0 and 1:
Xi = Xim + HAX; = Xin — HAX,. (16)

In a linear mechanization, the homogeneous variables and parameters
are very simply related. The quantities X; and z; are connected by a
linear relation,

X — X = kiz: — ). a7
If k; is positive, the minimum values of X; and z; occur together, as do the
maximum values:

Xim — XSO) = kt‘(zim - xsm)y (18(1)
k: > 1)
X — X = ki(zie — ). (18b)
It follows by introduction of these relations into Egs. (10) and (14) that
H; = h. (k: > 1). (19)

If k; is negative, the maximum value of X; occurs together with the mini-
mum value of z;, and conversely:

Ximn — XO = Ei(zine — 2®), (20q)
(ki < 1)
X — X = ki(Tim — 2{"); (200)
then
H=K=1—h. (k: < 1). (21)

Equation (19) will be referred to as the “direct’’ identification of H;
with A It implies that X; and z: are linearly dependent on each other,
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changing in the same sense between minimum and maximum values
which they attain simultaneously; the scale of x; is even, and increases in
the direction of increasing X;. Equation (21) will be termed the *com-
plementary identification” of H; and k;; it implies that the scale of z; is
even, and increases in the direction of decreasing X;.

In terms of homogeneous variables, the problem of linearly mechaniz-
ing a given function takes on a particularly simple form. For instance,
if the given function involves a single independent variable, it may be
expressed in terms of a homogeneous input variable k; and a homogeneous

output variable hs:
hz = f(hl)- (22)

A linkage with one degree of freedom, operating in a specified domain of

the input parameter,
Xim £ X; £ Xin, (23)

will generate a relation between homogeneous input and output param-
eters, Hy and H,, respectively:

H, = F(H,). (24)

It is then required to find a mechanism and domain of operation such that
Eq. (24) can be transformed into the given Eq. (22) by direct or comple-
mentary identification of H, with h,, with H; with h,.

The usefulness of homogeneous parameters and variables will be
abundantly illustrated in the chapters to follow.

3.3. An Operator Formalism.—It is often necessary to combine
mechanisms in series, in such a way that the output parameter of the
first becomes the input parameter of the second, and so on. The first
mechanism determines an output parameter X, as & function of the input
parameter X:

X2 = ¢1(Xy). (25a)
The second mechanism determines an output parameter X;in terms of X,

X3 = ¢2(X>); (250)
the third determines an output parameter X, in terms of X 3

X = ¢3(Xs); (25¢)

and so on. The final output parameter, for example, X, is then deter-
mined as a function of X;:

X = ¢s{ (X D]} (26)

The conventional notation of Egs. (25) and (26) is fully explicit, but some-
times cumbersome. For many purposes the author finds it more con-
venient and more suggestive to use the following operator notation.
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Equation (25a) implies that the value of X can be obtained by carry-
ing out an operation (of character specified by the definition of ¢1) on the
value of X;. As an alternative notation we shall write

X, = (X2[X1) « X, (27a)

where (XX ) denotes an operator converting the parameter X, into the
parameter X,. Similarly, Egs. (25b) and (25¢) become

X5 = (X;|X,) - X, (27b)
X4 = (X4|X3) - Xa. (270)

In this notation Eq. (26) becomes
Xy = (X4 X3) - (Xa]X2) - (Xo|X0) - X (28)

This form shows clearly the successive operations carried out upon X,
to produce X, It will be noted, however, that the operators are dis-
tinguished from each other only by specification of the parameters
involved; it is not possible to change the argument of a given function, as
in the conventional functional notation.

The over-all effect of Eqgs. (27) is to define X as a function of X;:

X4 = (X4IX1) * X]_. (29)
On comparing Eqs. (28) and (29) we obtain the operator equation
(X4l X3) - (X X0) - (X?.le) = (X JX)). (30)

The form of this equation calls our attention to a possible manipulation
of these functional operators. In a meaningful product of operators,
each internal parameter will occur twice in neighboring positions in
adjacent operators. One can, without changing the significance of the
operator, strike out such duplicated symbols and condense the notation
thus:

(Xa|X) + (X3]X2) » (XofX3) — (Xo|Xa) - (Xo|X1) — (X X)), (3la)
or

(Xl X3) * (Xa]X) - (Xo]X1) = (X4 Xs) - (Xo|X)). (310)
Conversely, one can deseribe the structure of au operator in more detail,

with consequent expansion of the notation:
(X4 X1) — (X4 X3) - (X5|X1) - (X X5) - (Xl Xa) - (XalX0). (32)

The inverse operator to (X2|X,) will be (X4|X;). Thus

X1 = (XIIXZ) * Xz, (33)
(Xl]XZ) : (leXl_) = 1. (34—)

Both sides of an operator equation can be multiplied by the same
operator. This must be done in such a way that the resulting operators
have meaning: the multiplied operators must have neighboring symbols in




SEc. 3-4] GRAPHICAL REPRESENTATION OF OPERATORS 51

common. Thus one ecan multiply both sides of Eq. (30) from the left by
the operator (X,|X4), to obtain

(Xo|X4) - (X4 Xs) - (XoXs) - (Xa|Xy1) = (Xo|X4) - (X4|X0), (35)
which may be condensed to
(Xl X3) * (Xa|X1) = (Xo| X} - (X4|X1). (36)

Multiplication of Eq. (30) by (XiX,) from the right is not defined,
but multiplication from the right by, for example, (X,|X5) is defined.

This operator formalism can be applied to variables as well as to
parameters. An input scale, which determines a parameter X; asa func-
tion of a variable x;, can be represented by an operator (X.|x;); an output
scale would be represented by an operator (z: Xs).

3-4. Graphical Representation of Operators.—The operator (X X.),
like the function ¢.(X;), is conveniently represented by a plot of X
against X;. This representation is most uniform and most useful when
homogeneous parameters or variables are used. A plot of H; against H;
always lies in a unit square (Fig. 3:6); it can be used in the graphical
construction of curves representing products of the operator (Hy|H;) with
other operators, and in the solution of other types of operator equations,
in a way which will now be explained.

Given the analytic form of the relations symbolized by

Hk = (Hk[H,) N H,‘, (37(1)
H, = (H.,|Hy) - Hy, (37b)

one can determine the form of the relation
H, = (H,|H:) - H; (37¢)

by eliminating the parameter H;. In the same way, one can determine
the graphical representation of the product operator

(HJ|H) = (H.,|Hy) + (Hi|H.) (38)

by graphical elimination of the parameter Hy from plots of (H,|H:) and
(H:JH.)). Figure 3-7 illustrates the required construction. The opera-
tors (H,|H.) and (H,|H:) are represented, in the standard way, by plot-
ting the first parameter vertically against the second horizontally. In the
representation of (Hi|H), H: is thus plotted vertically, but in the repre-
sentation of (H,|H;) it is plotted horizontally. The parameter H, is
plotted horizontally in the first case, and H, vertically in the second; it is
in this way that they are to be plotted in the standard representation of
the product operator (H,[H;), which we must now construct. On the
main diagonal of the square, the line (0, 0) — (1, 1), we select a point 4;
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this will represent, by its equal horizontal and vertical coordinates, a par-
ticular value of the parameter H;. A horizontal line through 4 will
intersect the curve (H.|H;) at a point B; the horizontal coordinate of
Bis a value of H; corresponding to the chosen Hy. A vertical line through
A will intersect the curve (H,!H) at a point C; the vertical coordinate of
C is the value of H, corresponding to the chosen H;. The point D, con-
structed by completing the rectangle ABDC, then has the horizontal
coordinate H; and the vertical coordinate H, corresponding to the same

1 2
(H, 1 H)) (H, | Hy) (Hp| Hy)
(H, 1 HY
]

i /

L

Q

0 H;— 1

Fia. 3-6.—Graphical representation of a Fia. 3-7—Construction of a product of

typical operator (HxlH). operators.

value of H;; it is a point on the curve of the product operator (H,|H,). It
will be noted that the horizontal line through A intersects the curve
(Hi|H;) at a second point, B, to which corresponds a second value of
H; compatible with the same values of H; and H,. The point D’ deter-
mined by constructing the rectangle A B’D'C is thus a second point on the
curve (H,|H;). By carrying out this construction for a sufficient number
of points A, one can determine enough points D, D', on the curve (H,|H)
to permit its construction with any desired accuracy.

The slopes of the factor and product curves are simply related. The
analytic relation

dH, _dH, dH.

di, = a,  dH. (39)

becomes, in the notation of Fig. 3-7,

[Slope of (H,|H;) at D] = [Slope of (H,|H:) at C]
X [Slope of (H|H:) at Bl. (40)

If the factor curves intersect at a point 4 on the main diagonal, the rectan-
gle ABDC reduces to a single point; the product curve passes through this
same point, with a slope equal to the slopes of the factor curves. An
important special case is that in which both factor functions are con-
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tinuous and monotonically increasing in the range of definition. The
factor curves then intersect at the points (0, 0) and (1, 1), at the ends of
the main diagonal: the terminal slopes of the product curve are equal to
the products of the corresponding terminal slopes of the factor curves.

It is sometimes desirable to construct the product (H,|Hz) - (Hx Hy),
using, instead of a plot of (H, Hy), a plot of its inverse, (Hi|H,). The
required construction is shown in Fig. 3-8. A horizontal line through a
point A, corresponding to an arbitrarily chosen value of H;, will intersect
the curve (Hy|H,) at a point C with horizontal coordinate H,, and the
curve (HiH;) at a point B with horizontal coordinate H;. A vertical
line through C will intersect the main diagonal at a point D with vertical
coordinate H,. Finally, by completing the rectangle CDEB, one can
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F1g. 3:-8.—Construction of the Fre. 3-9.—Graphical solution of
product (H,|Hx) - (Hx|H:), using Z - (Hi|Hy) = (H.|Hy).

plot of (Hi H,).

determine the point E, with vertical and horizontal coordinates H, and
H,, respectively; this point, then, lies on the required curve (H,|H.).
This construction is essentially a solution of the operator equation

(HilH,) - (Ho|H:) = (HiHy), (41)

the first and third of these operators being known. Otherwise stated, it is
a graphical solution of the operator equation

(Hi|H,) - Y = (Hi|H) (42)

for the unknown operator Y, which is obviously the desired (H,|H;). It
will be noted that the construction of Fig. 3-8 is that required for the
multiplication of (H.|H,) and (H,|H:) to produce (Hx H,), according to
the method first explained.

Another operator equation often encountered is

Z - (HJ|Hy) = (H,|Hy). (43)




54 BASIC CONCEPTS AND TERMINOLOGY [SEc. 35

The construction for Z is sketched in Fig. 3-9 in the case of monotone
operators (H,|H:) and (H,.|Hz).

3:6. The Square and Square-root Operators.—It is sometimes desir-
able to connect in series two identical linkages with equal input and out-
put travels. The first linkage carries out the transformation

H, = (Hle,) * H,’, (440)
the second linkage, the transformation
H, = (H,|H}) - H;, (44b)

where the operators (H\H;) and (H,|H:) are identical in form, though
not, of course, in the arguments. Then

(H.IH;‘) = (H,[Hk) N (Hk'HI) (45)
v A
Way T o
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Fia. 3:10.—Squaring an operator. F1Gg. 3-11.—Squaring an operator W

represented by a curve which crosses the
main diagonal.

is essentially the square of the operator
W = (H,|Hy) = (HilH); (46)

Eq. (45) may be written as
(HJH) =W -W = W (47)

The construction for the operator W? is illustrated in Figs. 3:10 and 3-11.
In principle, it is the same as the construction of Fig. 3-7; differences in
appearance arise from the fact that, since the functions are identical, the
points B and C lie on the same curve, instead of on two different ones.

The curve representing W? lies beyond the W-curve, away from the
main diagonal. Where the W-curve crosses the main diagonal, the
W2-curve also crosses it, with a slope equal to the square of the slope of the
W-curve; terminal slopes are related in the same way when the terminal
points are (0, 0) or (1,1). Thus the variations in slope of the W2-curve,
and its curvature, are greater than those of the W-curve.
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The difficulty in designing a linkage to generate a given function tends
to increase with the curvature of the function. It is often impossible to
use a linkage of given type to mechanize a given functional operator
(H,|H;) = W? with large curvature, but quite feasible to mechanize the
less strongly curved square-root operator W. 1If it is possible to solve
Eq. (47) for the operator W, and to mechanize this by a linkage with equal
input and output travels, it is then possible to mechanize the given func-
tion by two such linkages in series. This technique will be discussed in
Chap. 6; we shall here consider only the
graphical method for solving for the =
square-root operator W, when W2increases v £
monotonically.

The general nature of the problem of
solving for W can be understood by in-
spection of Fig. 3:10. One needs to fill
out the region between the main diagonal iy
and the W-curve by a system of rectangles | $
with horizontal and vertical sides, such F’ 7
that one corner of each rectangle lies on the |fF¢
main diagonal, the opposite corner lies on
the W2curve, and the other two corners
fall on a continuous curve, the W-curve.
This can always be done, and in an infinite number of ways; the square-
root operator is not unique, but has the multiplicity of the curves that
can be drawn between two given points.

A square-root operator can be constructed in the following way.
Between the main diagonal and the W2-curve, let a point C be chosen,
quite arbitrarily (Fig. 3-12). Beginning at the point C, construct the
horizontal line o8, the vertical line v, the horizontal line 3, and so on;
these form a step structure with vertexes alternately on the main diagonal
and the W2-curve, extending through the region between these lines. A
second step structure passing through C is formed by the vertical line
#a, the horizontal line o’8’, the vertical line 'y, and so on. These two
step structures define a series of rectangles with opposite vertexes on
the main diagonal and the W2curve. The other vertexes define a
sequence of points, . . . , 4, B, C, D, . . . , such that a W-curve which
passes through any point of the sequence, say C, must pass also through
all the others. This sequence of points will have a point of condensation
where the W2-curve crosses the main diagonal, and cannot be extended
through such a point. In Fig. 3-12 the points of condensation are the
terminal points (0, 0) and (1, 1); in a case like that of Fig. 3-11, inde-
pendent sequences must be defined in regions separated by points of
condensation.

Fic. 3-12.—Construction of a
square-root operator.
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Let us choose to construct a square-root operator, W, which passes
through the sequence of points, . . . , 4, B, C, D, . . . , indicated by
solid circles in Fig. 3-12. We can also require that it pass through any
other similarly constructed series of points, . . . , A", B, C', D', . . .,
such as that indicated in Fig. 3-12 by small circles. We can, in fact, com-
pletely define W by requiring that it pass between points B and C in an
arbitrarily chosen continuous ecurve. Corresponding to the points of this
curve, the above construction will define sequences of points that con-
nect 4 to B, C and D, and so on; these points define a continuous W-curve
extending from one condensation point to the next. The reader will
find it easy to prove that if W is to be single-valued everywhere, it must
increase monotonically between B and C.
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Fig. 3-13.—Construction of a squareroot Fi1G. 3.14.—Square-root—operator curve
operator near a point of condensation. having a derivative at a point of conden-

sation.

The square-root operators thus defined do not, in general, have
derivatives at the limiting points of condensation. In Fig. 3-12 it is
2vident that the W-curve oscillates more and more rapidly as the origin is
approached, and it is hardly to be expected that a derivative will exist at
that point. Figure 3-13 represents the part of Fig. 3-12 very near the
origin, in a neighborhood in which the W2-curve can be replaced by a
straight line with finite slope 8 = 1. The points a, b, ¢, d, e, fall in the
same sequence as the points 4, B, C, D, of Fig. 3-12. No attempt is made
to represent the forms of the intervening curve segments, which are
replaced by straight lines. The step structure shown dashed is the con-
tinuation of the structure a8vde . . . of Fig. 3-12; it will be unchanged if
the point C is shifted horizontally, say to C*. The other step structureis
the continuation of &’8'y'6’ . . . , and it will be changed by a horizontal
shift of C. It is easy to show that the segments ab, cd, ¢f, . . . , are
parallel, as are the segments be, de, fg, . . . . The segments ab and cd
are in general not parallel to each other; the average slopes in successive
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segments of the W-curve remain constant and different as the origin is
approached, and no derivative exists at the origin.

As we have already noted, a shift of the point C of Fig. 3-12 to the left
will modify one of the step structures, defining a new sequence of points
a* b* c* ..., corresponding to the new point C*. By proper choice
of C* the new sequence of points can be brought to lie on a straight line
through the origin, as shown in Fig. 3-14. Only through this particular
sequence of points can one pass a W-curve having a derivative at the
origin; the limiting slope of that curve must be the slope of the line
a*b*c* . . ., wheh is easily shown to be 4/S. This geometric argu-
ment thus leads to the already stated conclusion that the slope of the
W-curve at a point of condensation must (if it exists) be equal to the
square root of the slope of the W2-curve.

The argument of the preceding paragraph also leads to the conclusion
that on any given horizontal line there is one and only one point C* that
lies on a W-curve with derivative at the origin. It is evident, then, that
the condition that the W-curve shall have a derivative at the origin (or
any other point of condensation where the W2-curve intersects the main
diagonal with a finite difference of slope) is sufficient to determine uniquely

_ the form of the W-curve as far as the next adjacent point of condensation.
Since an independently determinable section of the W-curve usually lies
.between two such points of condensation, the condition that it have a
derivative everywhere places on it two conditions, which may or may not
be consistent. Thus for any given monotonic W2-curve there can exist,
at most, one W-curve with a derivative everywhere; there may exist none
at all.

If the W-curve is to be mechanized exactly, it is obviously necessary
that it have a derivative everywhere. For an approximate mechanization
it is only necessary that the W-curve oscillate with sufficiently small
amplitude about a mechanizable curve with a derivative everywhere. In
either case, the analysis just outlined forms a practical basis for the
determination of W-curve. Trying in turn several points C, one can
quickly find a point C* such that the slopes of the segments a*g*, g*y*,

. . approach equality as one of the two limiting points of condensation
is approached. The corresponding slopes may then oscillate near the
other point of condensation, at which this W-curve will have noderivative.
It is, however, usually possible to choose C* so that the oscillations of the
W-curve are negligibly small near both points of condensation. By inter-
polation one can then determine a smooth approximate W-curve suitable
for mechanization.




CHAPTER 4
HARMONIC TRANSFORMER LINKAGES

We turn now to the problem of designing a bar linkage for the mecha-
nization of a given functional relation between two variables. The devices
used will be discussed in the order of their increasing flexibility and the
increasing complexity of the design procedure required: in Chap. 4,
harmonic transformers and double harmonic transformers; in Chap. §,
three-bar linkages; in Chap. 6, three-bar linkages in combination with
harmonic transformers or other three-bar linkages. Full examples of the
design techniques will be provided by detailed discussions of the problem
of mechanizing the tangent and logarithmic functions.

THE HARMONIC TRANSFORMER

4-1. Definition and Geometry of the Harmonic Transformer.—An
ideal harmonic transformer is a mechanical cell for which input and output
parameters X; and X are related by

Xy = Rsin X, (1)

R being an arbitrary constant. Such a relationship can be obtained with
simple mechanisms modeling a right triangle, such as are sketched in Fig.

+
t
-—Xk

Fia. 4-1.—Ideal harmonic transformers.

4-1. These harmonic transformers are called “ideal” because they

generate the sine or arc-sine functions accurately ; unfortunately, they are

somewhat unsatisfactory mechanically, and are therefore used only

exceptionally in practical work. It is usually preferable to employ

nonideal harmonic transformers, such as those shown in Figs. 4-2 and 4-3,
58
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which give only an approximately sinusoidal relation between input and
output parameters.

The mechanism shown in Fig. 4-2is an ordinary crank-link system with
unsymmetrically placed slide. The deviation of the output parameter
from its “ideal” value depends upon the angle ¢ between the link L and
the line of the slide. Representing the output parameter by X}, one has

X!, = Rsin X; — L(1 — cos ¢). 2)

This may be written as

X, = X + 8X,, 3)

’

X

Kimp—<—"Xan

Fia. 4:2.—Crank-link system as a nonideal harmonic transformer.

where 6X; is the structural error of the mechanism as compared with the
ideal harmonic transformer:

86X, = —L(1 — cos ¢). 4)
In the mechanism of Fig. 4-2, € is variable, being given by
Lsine =Rcos X; — W. (5)

In Fig. 4-2 the slide displacement W has been so chosen as to keep e,
and hence 86X, small as the crank turns through its limited operating
angle. As will be discussed in detail later, it may be desirable to make a
different choice of W in order to obtain a desired nonvanishing form for

X,
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Figure 4-3 represents a harmonic transformer connected to another
linkage such that the pivot P may be found anywhere within the shaded
area. Equations (2), (3), and (4) hold in this case, but ¢ and the strue-
tural-error function 3X; now depend not only on X;, but also on the
position of the pivot P within the possible boundary.

An ideal harmonic transformer generates a section of sine or arc-sine
curve, the form of which can be fixed by specification of the angular limits
of the rotation of the crank, X;, and X;». The nonideal harmonic trans-
former requires four parameters for its specification—{for instance, Xn,
X.u, L/R, and W/R. The presence of these additional parameters per-

£A)
{[(I/II/I/,A z

[ ™

F1G. 4-3.—A nonideal transformer without fixed slide.

mits a considerable extension of the field of mechanizable functions—an
extension which becomes striking if e is permitted to assume large values.
In most practical work ¢ and 8X; are kept fairly small; 6X, then appears
either as an error arising from the use of a nonideal design, or as a small
correction to the sinusoidal form, by which one makes the mechanized
function correspond more closely to a given, not exactly sinusoidal,
function. ]

In working out the mathematical design of a system that includes a
nonideal harmonic transformer, it is usually desirable to carry through the
first calculation as though the transformer were ideal. The error arising
from use of the nonideal design can then be corrected in the final stages
of the work (if this is required by very rigid tolerances), or so chosen as to
minimize the over-all error of the system.
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4.2, Mechanization of a Function by a Harmonic Transformer.—
In the harmonic transformer one parameter is a rotation, the other a
translation. Either of these may be taken as the input parameter. If
the crank R is the input terminal, the limits of the input parameter X; may
be chosen at will; the crank can describe any angle or make any number
of revolutions. The mechanized function will always be a sinusoid or a
part of a sinusoid between chosen limits
(Fig. 4-4). If the slide is the input ter-
minal, the range of the input parameter
X, must be limited to keep the mecha-

X, Maximum
AX, slope

Xow, R
) X,
AX ) AX; il X,
-xbl! J X; _L- im
Kim X Xn
iM

p—y .th
AX;
Fia. 4-4—Sinusoid generated by an ideal Fia. 4-5.—Arcsinusoid generated by an
harmonic transformer. ideal harmonic transformer.

nism far enough from the self-locking positions. The mechanized
function is then a portion of an arcsinusoid (Fig. 4-5) within which the
slope does not exceed some maximum value determined by mechanical
considerations.

The simplest problem in ideal-harmonic-transformer design is that of
mechanizing a harmonic relation, analytically expressed, between varia-
bles z; and z;:

Ty — Tk, = T 8in (z; — zi,), r >0, (6a)
or

T — i, = sin? <x"+x""); (6b)

given specified limits for the input variables. To determine the constant

R of the harmonic transformer and the required relation of the variables

i, Zx, to the parameters X;, X, one need only compare Eqgs. (1) and (6):
Tk — Ty __ X;
- = 75?

r R

The value of R, chosen at will, determines the scale factor K; of the param-
eter X,:

T — Xy = X,‘. (7)

Ty — Xk Ty — Xr,
Kk 0 __ Yk ko _

= = r
CXe— Xa, X k ®)
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[Xr = 0, by Eq. (7)]. The scale factor for X;is unity. These constants
being fixed, the harmonic transformer is determined. The range of
parameter values for which it must operate is determined by the limited
range of the input and output variables, Tim £ i £ Zinr, Tam < Tk = T

Xim = Tim — Tiy Xine = Tim — Tiyy 9

Xpm = kaTkzk“: Xiw = :EEMTI‘% (10)

A less trivial problem is that of mechanizing a function that has a
generally sinusoidal character, but is given only in tabulated form. One
possible method in such a case is to fit the given function as well as possi-
ble (for example, using the method of least squares) by the analytic
expressions of Eq. (6), and then to proceed as just explained. A quicker
way, making use of homogeneous variables and parameters, will now be
presented.

4.3. The Ideal Harmonic Transformer in Homogeneous Parameters.
Before expressing the equation of an ideal harmonic transformer in homo-
geneous parameters, we must define the parameters more precisely.

The position of the crank R (Fig. 4-2) is described by the parameter
X, the rotation of the crank clockwise from a zero position perpendicular
to the center line C of the slide. The other parameter, X, is defined as
the normal projection of the arm R onto the center line of the slide. The
crank R in the zero position is pictured as directed upwards, and X, is
taken as positive toward the right from the point S.

The homogeneous parameters 6;, H:, are related to the parameters
Xi, Xk, by
— -Xn' - Xim’ Hk — Xk - ka_

b AX; AX, (1)

(The symbol 6; is chosen to represent one homogeneous parameter,
instead of H,, to emphasize the fact that in this case one is concerned
with a rotation.) From these definitions it follows that both homo-
geneous parameters increase in the same sense as the original parameters:
6; increases always clockwise, H; increases to the right.

The connection between ordinary and homogeneous parameters in a
harmonic transformer is illustrated in Fig. 4-6. The arc of the angle of
travel AX,, scaled evenly clockwise from O to 1, permits direct reading of
6;. The projection of that arc on a straight line perpendicular to the
gero line SO, scaled evenly from 0 to 1, from left to right, permits direct
reading of H;. Any line parallel to OS passes through corresponding
values of 6; and Hi. The correlation of values of H; to those of 6 is
unique so long as AX; < 360°; the converse correlation may be double-
valued in some cases, as is illustrated by Figs. 4-6(b) and 4-6(c).
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From the definition of homogeneous parameters and from Eq. (11) it
is evident that, always,

sin (X.[m + 0.-AX,-) - (sin Xi)min

He = = X = i X

(12)

(a}
Fia. 4-6.—Ideal harmonic transformer with homogeneous parameters.
(@) (8in X;)max = sin Xyu. ®) (sin Xi)max = 1. (¢) (sin X)min = sin Xyp.

Special forms of this relation, applicable in cases of the types illustrated
in Figs. 4-6(a), 4-6(b), 4-6(c), respectively, are as follows:

sin (Xim + 6:AX;) — sin X

H, = sin Xiy — sin X;p, (13a)
_ sin (X.'m + B.AX,) — sin X,‘m

H = 1 — sin Xin (135)
_ sin (Xim + 60,AX;) — sin Xia

Hi = T — sin Xox ' (130)

4-4. Tables of Harmonic-transformer Functions.—The use of har-
monic transformers as parts of complex linkages is so extensive and the
design problem is so greatly simplified by the use of homogeneous param-
eters that it is very convenient to have available a fairly complete table
of the functions appearing in Eq. (13). Table A-1 gives Hy for 6, = 0.0,
0.1, 02, - - - 09, 1.0, and for AX; = 40° 50° - - - 140°. Smaller
values of AX; are of little interest, since with small angular travel the
errors due to mechanical play become relatively important, and other
devices can serve as well for mechanization of the corresponding nearly
linear functions H:(6;). Two facing pages are required for each value of
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AX;. Columns of values of H; are grouped in pairs in a way intended
to facilitate the calculation of structural error functions, as discussed in
Sec. 4-5. The first of these columns has the corresponding values of
X and X, indicated at the top, and is tabulated with 6; (indicated to the
left) increasing downward. The second column has the values of X and
X indicated at the bottom, and is tabulated with 6; (indicated at the
right) increasing upward. The associated columns correspond to har-
monic transformers with X;, < X; £ X.» and with

(90° — Xiw) £ Xi £ (90° ~ Xom),

respectively; the significance of this and of other features of the table
which are not of importance at this point will be explained in Sec. 4-5.

Table A-2 gives 6; for H; = 0.0, 0.1, 0.2, - - - 0.9, 1.0, and for the
same AX; as Table A-1. The arrangement is simple and should require
no explanation here. Only single-valued relationships between H; and
6; are tabulated, since the table is intended for use when H; is the input
variable; all regions that include a point with infinite d6;/dH) may be
excluded.

In using Tables A-1 and A-2 to mechanize a tabulated function with a
pronounced sinusoidal character, the function should first be expressed in
homogeneous variables. We shall call the homogeneous input variable
h,, the homogeneous output variable k,, in order to avoid any commitment
as to which is to be the angular parameter in the mechanization.

Next, there should be tabulated in a column the values of the output
variable h,, for A, = 0.0, 0.1, 0.2, - - - 1.0, making such interpolations as
may be necessary.

It remains only to compare this column of npumbers with those in
Tables A-1 and A2, One can easily find which of these columns gives
the best fit to the given set of numbers; each column, it is important to
note, may be read either up or down. This determines the best values of
X.nand X;x for the harmonic transformer, to within 10°; by interpolation
one may fix these values even more precisely. The remainder of the
design process is then trivial.

If the best fit is found in Table A-1, the output variable A, is being
identified with Hy; the output terminal of the mechanization will be the
slide, the input terminal the crank. If the best fit is found in Table A-2,
the reverse is true.

Suppose that the best fit is found in Table A-1, and that, in reading the
corresponding columns, h, and 6; increase together. Then one has
h, = 6, h. = Hi. Knowing X;» and X:ux, one can construct scales of 6;
and H; as described in the preceding section; these are the required scales
of h, and h,, which one can recalibrate in terms of the original variables, if
this should be desired.
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If the best fit is found in Table A-1, but correspondence of the columns
requires that they be read in such directions that A, decreases as 6;
increases, then 1 — h; = 8, h, = Hy. The h.-scale thus differs from the
#-scale only in that %, increases to the left instead of the right; the rest
of the construction is as before.

If the best fit is found in Table A-2, one has h, = 6;, h, = Hy, if h, and
8; increase together, and otherwise 1 — h, = 8;, h, = H;.

In the cperational language introduced in Chap. 3 this process may be
described as follows: A funetional operator (h.h,) is given, and there is
sought a functional operator (H|6:) or (8;Hy) of a harmonic transformer
which transforms into the given operator (h.|h,) when the pair of variables
(hs, h,) is transformed into the pair of parameters (6;,, Hy) or (Hi, 6.)
through a direct or complementary identification.

When the tables are employed it is useful to make graphs of operators
and sketches of mechanisms in order to prevent mistakes. It is recom-
mended that the Hj-scale run always from left to right, that the zero line
for X; be directed upward, and that the scale for 6; increase clockwise, as
in Fig. 4-6.

Ezample: Use an ideal harmonic transformer to mechanize the relation

Zs = tan o (14)

with the range of the input variable «; from 0° to 50°. 'The homogeneous
variables are
Zi

hr = W, h,

Te

= tan 50° (15)

Table 4-1 gives the relation of i, to h, in tabular form.

TaBLE 4-1.—23 = TAN Z;, 0 < z; £ 50° 1IN HOMOGENEOUS VARIABLES

h, h,
0.0 0.0000
0.1 0.0734
0.2 0.1480
0.3 0.2248
0.4 0.3054
0.5 0.3913
0.6 0.4844
0.7 0.5875
0.8 0.7041
0.9 0.8391
1.0 1.0000

In seeking a corresponding column in the tables, we need examine only
those which show no maximum. In such cases the first and last values
are always 0 and 1; every such column matches the given column at the
two ends.
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Consider first Table A-1. Fixing on a value of AX;, we seek a column
that gives a match at the middle as well as at the ends; for example, with
AX; = 70° the best match is obtained for X, = —70° X.,» = 0°.
However, this column contains values that are too small at small 6;, too
large at large 6., Repeating this process for smaller AX;, one obtains a
better over-all fit, but the improvement is slight; one must either use
very small values of AX; or tolerate errors of over 2 per cent of the total
range.

Next we examine Table A-2. Again the best match is obtained for
relatively small AX,—a consequence of the nearly linear character of the
tangent function in the given range. Here, however, a much better
match is possible. Comparing with the given h, the values of §; shown in
Table A2 for Xin = 30°, Xix = 70° and for X = 35°, X.x = 75°
one finds the differences shown in Table 4-2.

TABLE 4-2,—VALUES OF h,-8;

H, Xim = 30° Xim = 35° Xim = 31.5°
X = 70° Xy =75° Xor = T15°
0.0 0.0000 0.0000 0.0000
0.1 —0.0004 0.0036 0.0008
0.2 —0.0023 0.0056 0.0001
0.3 -0.0050 0.0065 —0.0015
0.4 —0.0076 0.0072 —0.0032
0.5 —0.0097 0.0080 —0.0044
0.6 —0.0106 0.0095 —0.0046
0.7 —0.0095 0.0120 —0.0030
0.8 —0.0060 0.0152 0.0003
0.9 —0.0009 0.0160 0.0042
1.0 0.0000 0.0000 0.0000

Linear interpolation between these columns shows that with X, = 31.5°
X:u = 71.5° the difference between h. and 6; remains less than 0.005; an
ideal harmonie transformer with these constants would have a structural
error everywhere less than 0.5 per cent of the travel.

Figure 4-7 shows the harmonic transformer thus designed, with func-
tional scales for h, = Hy and h, = 6;. The travel, AX;, can be given any
desired value by proper choice of R:

AX = R(sin 71.5° — sin 31.5°) = 0.4258R. (16)

It is interesting to note that in this example the angular variable z; of
Eq. (14) has been mechanized as a slide displacement, the linear variable
zs as an angular displacement, whereas in a constructive computer the
reverse would be the case.
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In this design procedure we have treated the harmonic transformer as
ideal. To construct it as nonideal would introduce an additional strue-
tural error, 6X:, described by Eq. (4)—an error that can be made suf-
ficiently small by making the link L very long and by so placing the center
line of the slide as to reduce the maximum value of the angle ¢ as much as
possible. In general it is better to make positive use of the term §X;, so
choosing the design constants that §X; tends to cancel out the structural
error 8h; of the ideal-harmonic-transformer component of the mechanism.
In the present case this may seem hardly worth the trouble, as the fit
obtained with the ideal transformer is very good. However, it is to be

0.0 05 10
,_l_l_g

Fia. 47—Harmonic transformer mechanizing X2 = tan X1, 0° < Xy < 50°. A better
design is shown in Fig. 4-12.

noted that this design is unsatisfactory in that the angular travel AX; is
rather small. In practice, it would be better to employ a nonideal trans-
former with large angular travel, keeping the total structural error small
by judicious choice of L and the slide position (Fig. 4-12). The required.
design technique is discussed in the next sections.

4.6. Total Structural Error of a Nonideal Harmonic Transformer.—
In finding & harmonic transformer to mechanize a given relation,

hi = (helhs) - b, (17)
one begins, as already described, by finding an ideal harmonic transformer

that gives an approximate fit. Then if 6; is identified with A;, H; can also
be identified with h;, except for the small structural error 8k;:

Hy = by + ohs (18)
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If the transformer to be used is nonideal, its output parameter will be not
Hy but H;. Representing by 6H, the change in output arising from the
nonideal character of the transformer, we write

H; = Hi + 8H,. (19)
T.e complete mechanism then has a structural-error function
5h;, = H;c - hk = 5Hk + 5hk,' (20)

it is this error that should be reduced to tolerable limits over the whole
range of operation.

A nonideal harmonic transformer has been sketched in Fig. 4-2. Of
the four design constants, X, and X;x characterize the ideal-harmonic-
transformer component and determine the form of éh;; L/R and W/R
affect only the form of 8H;. It is of course impossible in general to make
6h; vanish identically by any choice of these parameters. Ideally,
one would manipulate all four parameters in order to make 8h; every-
where satisfactorily small, without regard to the resulting magnitude of
0H and 8h.. An easier technique is to make 8h; as small as possible by
choice of X;» and X, and then to choose L/R and W/R so as to minimize
dhy; however, one can often arrive at more satisfactory designs, and even
appreciably reduce the over-all error, by some other choice of X, and
X

4-6. Calculation of the Structural-error Function §H, of a Nonideal
Harmonic Transformer.—In designing harmonic transformers it is impor-
tant to have a quick, efficient way to compute the structural-error func-
tion 6H;:. Use of Eq. (4) is neither quick nor well adapted for work with
homogeneous parameters; better methods to be described here and in
Sec. 4-7 depend upon reference to Table A-1. The discussion will be
illustrated by Fig. 4-8, which shows a harmonic transformer with alterna-
tive positions for the link L, extending from the crank toward the left or
toward the right. Here, and throughout the discussion that follows,
the unit of length, in which all dimensions are stated, is taken to be the
length of the Hj-scale; thus, AX, = 1. As before, we consider the
harmonic transformer in its basic position, with §; increasing clockwise,
the zero for X; vertically upward, and scales H; increasing from left to
right.

The change from the ideal harmonic transformer (scale H,) to the
nonideal one (scale H;) will be traced through two steps.

First, the Hj-scale may be shifted bodily to the right or left by a dis-
tance L. On this scale, shown in Fig. 4-8 above the slide, the reading
opposite the pointer will be Hi, modified by an error

DHy = +|L|(1 — cos ¢€). (21)
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The sign of this error depends only on whether the crank extends to the
right or to the left. Taking L as positive when the link extends toward
the left, negative when it extends toward the right, one has always

DH,=L(1 — cose). (22)

As H; changes from zero to one, Hx + DH| changes between limits which
are in general not zero and one:

thus H, 4+ DH;is not in general a homogeneous parameter.
As the second step, the H, + DH,-scale is replaced by the homo-
genized H{ scale, shown in Fig. 4-8 below the slide:
Hiy + DHi — (Hx + DHi)min

H = (Hy + DHi)mwe — (Hr + DHYun (24)

L
je
|
0.0 05 5
H. +, DH. Ld_l—hl_l_i—hl—l—l
©
H/00 05

Fra. 48.—Notation used in harmonic transformer design.

When DH,; is reasonably small the maximum value of Hy 4+ DH, will
oceur at essentially the same #; as the maximum of H,—that is, when
Hy = 1. One can then write

(Hr + DHp)max = 1 + (DH)),, (25)

and similarly
(Hi + DH)win = (DH.)o, (26)
(DH.), and (DHj), being the values of DH; for H;: equal to 0 and 1

respectively. As an approximation good enough for all preliminary
calculations one has then

Hi 4 DH, — (DH)o
1+ (DH.): — (DHw)s

To compute DH;, we observe that if Y is the distance above the slide
center line of the pivot between L and B, then

Hi = 27

. Y
sin e = Tk (28)
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DH, =L [1 - ( — L—E)H]- 29)

Yi
2L
The quantity Y is conveniently found as a function of 8; by use of Table

A-1, by taking advantage of the special relationship of associated columns
of that table. The relationship of the corresponding harmonic trans-

and

When e is small

DH, =~ (30)

0 AXy
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F1a. 4-9.—Harmonic transformers associated in Table A-1.

formers is illustrated in Fig. 4-9. The first transformer (parameters
X, X»; 6;, Hy) operates through the range

Xin £ Xi £ Xin

(Xim = —15° X, = 75°in Fig. 4-9a). The second transformer (param-
eters X7, X7; 67, HY) operates through the range

X =90° — Xiu = XF £ XX =90° — Xim

(X%, = 15° X¥, = 105° in Fig. 4-9b). Now it will be observed that if
Fig. 4-9b is reflected in the line X] = 45° and superimposed on Fig. 4-9a,
the angular scales will then coincide, but with 6F = 1 — 6, The
H}-scale, however, becomes a vertical scale, as compared with the hori-
zontal Hi-scale. The entries in a section of Table A-1 may then be
interpreted as follows: For a harmonic transformer with limits on X; as
given at the fop, the four entries in each row, from left fo right, correspond
to (1) 6; for some index point P on the angular scale, (2) H;, which meas-
ures the horizontal displacement of that point to the right of a vertical
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reference line, (3) Hy, which measures the displacement of the same point
upward from a horizontal reference line (though in different units, since
the Hi-scale is not in general of unit length), and (4) 8 =1 — 6, If
the limits on X; are those given at the bottom of the section, the entries in
each row have the same meaning if they are taken in order from right to
left.

The quantity Hi(= X:) measures the actual distauce of the point P
from the vertical reference line, since the Hy-scale is one unit long by
definition. The length of the vertical scale is

_ (08 Xi)max — (€08 Xi)ia,
9= (Sin X.)mae — (810 X3)oma’

hence the actual distance of the point P from the horizontal reference line
is

(31)

X* = gHE. (32)

Values of g are given in Table A1, in the same line with those of X, and
X and in the same column with the values of Hy.
Returning now to the computation of Y}, we define Ej as the value on
the H¥-scale at the point where the slide center line intersects it. In Fig.
" 48, E} lies on the calibrated part of the scale. This is not necessarily so;
E} is a parameter in the design which may be assigned negative values, or
values greater than one. In any case

Y, = g(HE — E}). (33)

It is convenient to specify a nonideal harmonic transformer by giving
Xim, Xix, E¥, and L. Calculation of its structural-error function for a
series of values of 8; or H; then requires reading from Table A-1 the cor-
responding values of H¥, followed by computation of Y; by Eq. (33),
DH, by Eq. (29) or (30) (according to the accuracy required), H; by Eq.
(27), and finally 6H; by Eq. (19). An illustrative calculation will be
found in Table 4-5. This procedure is quick and easy if E¥ and L are
known, but when it is desired to determine the approximate form of Hy
for a considerable series of values of E and L, or to find required values of

#and L, the method to be described in the next section is to be preferred.

4-7. A Study of the Structural-error Function éH..—For a general
investigation of the structural-error function §Hy or for a preliminary (and
usually final) choice of E¥ and L in the process of designing a nonideal
harmonic transformer, it is sufficiently accurate to use Eq. (30) in com-
puting DH,, and to assume that

|DH; — (DHy)o| « 1. (34)

To this approximation Hj has a simple dependence on Ef and L which
facilitates its computation for a series of values of these parameters, or,




72 HARMONIC TRANSFORMER LINKAGES [SEc. 4.7

conversely, the finding of values of E¥ and L which give 6H; a desired
form and magnitude.

Expanding Hj;, as given by Eq. (27), in powers of the small quantity
(DHy)1 — (DHy)o, and neglecting terms of the second order of smallness,
one finds

Hj =~ Hy + [DH;, — (DHy)o] + Hi[(DH})o — (DH)4) (35)
and
0Hy ~ [DHy, — (DHy)o] + Hi[(DHy)y — (DH)4]. (36)

This approximation to §Hy, like the function itself, vanishes when H; = 0
or 1.
By Eqgs. (30) and (33),

2
DH, ~ %(H,? — Ep)e (37)

When this is introduced into Eq. (36) the quadratic terms in E# cancel,
and one finds

S, ~ &7 [1(6) + Bfa(00), (38)

where f1(6;) and f,(68;) depend only on the parameters X;», and X;x of the
harmonic transformer. With (H¥), and (H¥), the values of H¥ when H,
has the values 0 and 1, respectively,

fi(6:) = HE* — (HNE + Hi{(HES — (HDY, (39)
f2(6:) = —2{H} — (HE)o + H(HY)o — (H}. (40)

Knowing the form of f1(6;) and f,(6:), one can easily compute §H;, for a
large series of values of L and E¥.

To this approximation the magnitude of the structural-error function
varies inversely with L, but its form is determined entirely by E¥. The
possible range in forms is easily investigated by computing §H; for some
value of Ef—for example, for Ef = 0, in which case one has simply the
first term of Eq. (38)—and then adding to this the function f2(6;) in dif-
ferent, proportions.

Althougn f5(6;) is easily computed by Eq. (40), it is worth while to
take note of its simple analytic form. As functions of X, one has

_ osin X; — (sin X))
" (510 X rae — (SID X )min
« €08 X; — (cos Xy)uin
¥ (008 Xi)mer — (€08 Xy)mim

Let X, and X, be the values of X, for which sin X, has its minimum and
its maximum values, respectively. (These are not necessarily X, and
X, nor are they always the angles at which cos X; has its minimum or

Hy

(41)

(42)
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maximum values.) Then on combining Egs. (40), (41), (42), one finds,
after some trigonometric manipulation, that

2 sec (X———" ;— Xb)

fi=- (co8 X:)mae — (€08 X)min
X [cos (X.- - w’) — cos (%)], (43)

Xa + Xb

2 b
midway between the values of 8; for which H, = 0 and H; = 1;itis of the
form of a sinusocid minus a constant, and vanishes for H;, = 0 and

Jfais thus symmetric about the value of 8; corresponding to X; =

2L
2L s,
2 'k
£28) ¢ f E}=05
1 o 0
~051 -05
10+ @
2L o’ 05f E}=0.25
r el El=15 *
t o o > —
_0.5 L
-10t® .l El=00
0 E}=10 '
(4]
~05 (0) 10l E}=-05
E}=075 05t
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Fia. 4-10.—Structural-error functions for nonideal harmonic transformers. The
functions shown are (a) f2(6:), and (b) to (k) (2L/g?) 8Hy for a series of values of Ex*, when
Xim = —15° Xy = 75°.

Hy = 1. Its general form is thus easily sketched without reference to
Table A:1. When H; increases monotonically with 8;, fo(f;) is sym-
metrical about 6; = §} a fact which makes computation even simpler.

Toillustrate the change in form of §H with changing E# let us consider
the special case of a harmonic transformer for which —15° < X; < 75°,
The variation of H; with 6; for this transformer is shown by the middle
curve of Fig. 4-11. Figure 4-10 shows the form of f»(6;), and of

2L
7 0Hy = f1(6:;) + E¥fa(8:) (44)
for a series of values of Ef. When E} is less than —0.5 or greater than
L5, 6H has nearly the same form as f2(6.), which is symmetrical about
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6; = 0.5. To produce a desired form of Hj that differs from the given

7
2
2

(Hil6) *—(H,18,)

2
= 4
L=+2—/
p—L=-2
v
4

v
v

(a) Ex=0.0

(Hkl 9;)
L=-2 (H,:|0L-)

y L=+2
4

(b) Ez=05

(H;\8,)

(¢) Ex=1.0

Fi16. 411.—H(6;) for nonideal har-
monic transformers. Xim = —15°,
X = 75° L * 2, Ex* as indicated.

H), by a symmetrical correction 6Hy,
one would thus choose E; < —0.5 or
E; > 1.5; to raise the H; curves in the
center one would use a positive L
(link to the left) in the first case and
a negative L in the second, whereas
to depress the curve in the center
these orientations of the link would
be reversed. To lift or depress the
Hi-curves for small 6;, with little
change for 6; near 1, E¥ = 0 is an
appropriate choice; to make a change
near 4; = 1 but not near 6; = 0, one
should take E¥ = 0.75. With Ef
ranging from 0.25 to 0.5 it is possible
to depress one side of the curve while
raising the other, and so on. These
observations of course apply only to
the particular harmonic transformer
here considered; similar sketches
would need to be made as the basis for
a discussion of other cases.

The magnitude of 8H; is directly
controlled by the choice of L. It willbe
noted however, that when (2L/g?) 6H
is small, as for £ =~ 0.5, a particularly
small value of L may be required in
order to give 8H}, a desired magnitude.
In general, it is relatively difficult to
depress one side of the curve H,(6:)
while raising the other, and one may
find that an impractically small value
of L is required to produce a desired
effect. On the other hand, if one de-
sires merely to reduce 6H; below some
established tolerance one can with
advantage make Ef = 0.5, since con-
veniently small values of L are then
acceptable.

The magnitude of 8H, in typical
cases is illustrated by Fig. 4-11, in
which 8H, is given for three values of
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E}0.0, 0.5, and 1.0) with L = +2. The difference between the exact
calculations on which these graphs are based and approximate calcula-
tions using the results of Fig. 4-10 would not be evident to the eye. It
is to be emphasized, however, that final calculations should be made using
the exact formulas in all cases in which e approaches 45° (a value which, for
mechanical reasons, ought never to be much exceeded).

4.8. A Method for the Design of Nonideal Harmonic Transformers.—
The experienced designer of nonideal harmonic transformers will find it
possible to guess satisfactorily the required values of Ef and L, guided
only by visual comparison of the H-curves with the Jdesired form of Hj,
and perhaps a few exploratory computations. On the other hand, a
gimple and straightforward design procedure can be based on the results of
the preceding section. To illustrate this, we return to the problem (Sec.
4-4) of using a harmonic transformer to mechanize the relation r, = tanz,
for0° < z; < 50°. Here, however, we shall add the requirement that the
angular travel of the transformer shall be twice as great as that previously
USEdI AX. = 800.

Despite the imposition of this additional condition, it remains true
that it is best to mechanize z, as a linear displacement, x, as an angular
displacement: the best fit for Table 4-1 is to be found in Table A-2, rather
than in Table A:1. Since Table A-1 is to be used in the determination of
E? and L it is convenient to retabulate the relation of the homogeneous
variables k, and A, for equally spaced values of the variable &,, which is to
be identified with 6;. The result is shown in the first two columns of
Table 4-3. The best fit for the relation thus expressed is to be found in
Table A1, for Xim = —5°, Xix = 75°—the same values, of course, for
which one finds in Table A-2 the best fit to Table 4-1. The fit could be
improved somewhat by interpolation in the tables, the best value of X,
lying between —10° and —5°. We shall not bother with this interpola-

TasLE 4-3.—CompuTATIONsS IN DEsieNING A HarMoNic TRANSFORMER

h, = 6, hr H, hy — Iy fl fz (8Hk)npprox. (E)snbrox. (E)emt

.0000[ 0.0000] 0.0000 | 0.0000 0©.0000
.1378/—0.2701| 0.0048 | 0.0014| 0.0018
2225(—0.4858/ 0.0051 | 0.0008; 0.0010
2565/ —0.6433| 0.0015 | 0.0000; 0.0000
.2465/ —0.7387| —0.0049 |—0.0007 —0.0012
2027/ —0.7708] —0.0127 |—0.0011{—0.0018
1396, —0.7387, —0.0197 |—0.0008| —0.0018
0724/ —0.6433| —0.0240 | 0.0000/ —0.0010
0173|—0.4858| —0.0233 | 0.0008(—0.0002
0110|—0.2701| —0.0158 | 0.0010| 0.0002
0000 0.0000] 0.0000 | 0.0000] 0.0000

0.0000/0.0000| 0.0000
0.1359/0.1325| 0.0034
0.2683/0.2640| ©0.0043
0.3934(0.3919| 0.0015
0.50970.5139| —0.0042
0.6158(0.6274/ —0.0116
0.7115/0.7304| —0.0189
0.796710.8207| —0.0240
0.8726/0.8967| —0.0241
0.9401:0.9569 ~070168

1.0000‘1.0000 0.0000

|
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tion, but shall choose X;., = —5° X,» = 75° and throw the entire bur-
den of correcting our design on the choice of Ef and L. 'The values of H,
read from Table A-1 are shown in Column 3 of Table 4-3. The desired
value of 8H; is then h, — Hy, shown in Column 4 of this table.

As the next step, f1(6;) and f.(6;) are computed (Columns 5 and 6).
By Eq. (38) we can express 8H in terms of these functions:

8H, = af1(8:;) + bf2(6:), (45)
where
_g
a=3 (46)
and
_ B}
b= oL, 47

Our problem is then to make a linear combination of Columns 5 and 6 that
will approximate Column 4 as well as possible. It is a simple matter to
find the best fit in the sense of least rms error, but an even simpler method
will suffice: we shall fit 8H, to , — Hj exactly at two chosen points. In
applying such a method some discretion is necessary as a poor choice of
these points may lead to a bad over-all fit. We choose to make the fit
exact at 8; = 0.3 and at 6; = 0.7, assuring a proper height for the principal
maximum in §H; and a change in sign near the correct value of #;, The
error in the mechanization will then vanish for four nearly equally spaced
values of 6;: 0.0, 0.3, 0.7, 1.0. We require then

0.2565a — 0.6433b = 0.0015, (48)
0.0724a — 0.6433b = —0.0240.
Hence
a = 0.1385, b = 0.0529. (49)
By Eqgs. (46) and (47),
r = % = 0.382,
2 (50)
g
=2 =1788.
2a

The corresponding values of 8H, (as computed by this approximate
method) appear in Column 7 of Table 4-3, and values of

€= 5Hk - (hr - Hk),
the residual error in the mechanization, in Column 8 The maximum
error in the mathematical design thus appears to be about 0.1 per cent of
the total travel. The maximum value of sin e for this design is

g(1 — 0.382)

(sin u = Loere™™ = 0.243, (51)
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s sufficiently small value to assure good accuracy of the approximate
formulas employed. Exact calculation of the total design error in the
mechanization (last column of Table 4-3) shows that it nowhere exceeds
0.2 per cent, a highly satisfactory result. The device itself is sketched in
Fig. 4-12.

If excessively large values of € occur in a design thus determined, the
exact values of §H) will not be in satisfactory agreement with h, — Hj.
A further correction in 8H, is then necessary. This may be added te the
original values of h, — Hy, and the process of determining £ and L car-
ried through as before. The quantities 5H, computed with the resulting
constants by the exact formula, should now show better agreement with
the desired values (the original A, — Hyx). Repetition of this process will
usually lead to a satisfactory design, except when excessively large values

0.0 05 10

bl

Fia. 4-12.—Harmoniec transformer mechanizing z; = tan z:, 0° < 21 < 50°,

of eare called for. In such cases another choice of X, and X, may help,
or another type of linkage may be required.

HARMONIC TRANSFORMERS IN SERIES

4.9. Two Ideal Harmonic Transformers in Series.—With a single
harmonic transformer one can mechanize only a relatively narrow field of
functions. These devices have also a mechanical disadvantage in that
one terminal rotates or is rotated by a shaft, while the other pushes or is
pushed by a slide; usually one desires that all cells in a computer have
terminal motions of the same type.

As a first step in the extension of the field of mechanical functions we
consider the combination of two ideal harmonic transformers into an
“ideal double harmonic transformer,” as shown in Fig. 4-13. This
mechanical cell has satisfactory mechanical properties, with both ter-
minals moving in straight lines. The field of functions that it can gener-
ate can be described by three independent parameters—for instance, by
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AX;, Xim, Xim, where AX; is the range of angular motion common to both
arms of the rotating member, and X;» and X;» are the minimum values
for the angular parameters X; and X;, which describe the orientation of
the two arms. Although a considerable variety in form of the generated
function is obtainable by proper choice of these parameters, the ideal
double harmonic transformer is best suited to the mechanization of
monotonic functions with a mild change in curvature (as in Fig. 4-14)
and functions of roughly sinusoidal character (as in Fig. 4-16).

Fig. 4:13.—Ideal double harmoniec transformer.

Mechanically, the action of the double harmonic transformer may be
thus described: The input parameter X, is transformed into a rotary out-
put parameter Xz by the first harmonic transformer; this rotation is
imparted to a second harmonic transformer, for which it serves as a
rotary input parameter, X,; X, is transformed by the second harmonic
transformer into the final output parameter X,. Symbolically, in terms
of the corresponding homogeneous variables,

03 = (6;|Hy) * Hy, (52)
04 = (04'03) N 03 = 03, (53)
H, = (H2|04) . 94, (54)

or, combining these relations,
Hy = (Hs|0,) - (6465) - (6s|H1) - Hy = (Hi[63) - (6:|H1) - Hi.  (55)
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(Hp| Hy)

(631 Hy)

(H216y)

F16. 4-14.—Graphical construction of the function generated by a double harmonic trans-
former (Fig. 4-13).
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F1a. 4-15.—Ideal double harmonic transformer.
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From this symbolic equation it is evident that one can find the operator
for a double harmonic transformer,

(Hs|Hy) = (H.|65) - (65|H1) (56)

by the graphical multiplication of operators for the component harmonic
transformers, as explained in Chap. 3. The operator (8;}H:) may be
obtained from Table A-2, the operator (H.|8;) from Table A-1; they must
of course correspond to the same value of AX,.

As an example we take a double harmonic transformer (Fig. 4-13) for
which —75° £ X; £ 15°%;, —25° < X, £ 65°;, AX; = AX, = 90°.
We find in Tables A-1 and A-2 the following relations:

H, 9, 64 H,

0.0 0.0000 0.0 0.0000
0.1 0.1942 0.1 0.1106
0.2 0.3207 0.2 0.2263
0.3 0.4249 0.3 0.3443
0.4 0.5175 0.4 0.4616
0.5 0.6033 0.5 0.5754
0.6 0.6849 0.6 0.6828
0.7 0.7641 0.7 0.7813
0.8 0.8422 0.8 0.8684
0.9 0.9204 0.9 0.9419
1.0 1.0000 1.0 1.0000

Figure 4-14 shows graphs of these two operators, and the geometric con-
struction required for their multiplication as required by Eq. (56). The
graphical representation of the product (H2|H,) is an almost circular are,
quite different from the functions mechanizable by a single harmonie
transformer.

Another typical example of two harmonic transformers in series is
shown in Fig. 4-15. The travels are AX; = AX,; = 90°, with

—75° = X, £ 15°, 45° = X, £ 135°

The operator (85/H1) is the one used in the preceding example, and the
operator (H|6,) will be found in Table A-1. These operators are plotted
and their graphical multiplication indicated in Fig. 4-16. The resulting
operator is represented by a deformed sinusoid with its maximum dis-
placed to the left.

4.10. Mechanization of a Given Function by an Ideal Double Har-
monic Transformer.—As the first step in mechanizing a functional rela-
tion by an ideal double harmonic transformer, it should, as usual, be
expressed in homogeneous variables:

hz = (hz[h1) " hl, (57)

with k; the input variable, h; the output variable. One then desires to
find ideal-harmonic-transformer operators (H,|0,) and (8sH,) which
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correspond to the same value of AX; and which make
(Ho{H1) = (Hi[65) - (65 H1) (56)

approximate as well as possible to the given operator (hehi). It is
necessary for mechanical reasons, which apply whenever the slide
terminal of a harmonic transformer is used as the input, that (8;/H1) not

(Hy'Hy)

Ra:ACA

(851 Hy)

Fia. 4.16.—Graphical construction of the function generated by a double harmonic trans-
former (Fig. 4:15).

involve an infinity in digi; we need consider only those cases for which
1

Table A2 is constructed, with —90° < X;,., X < 90°.
Solution of this problem falls into two steps:

1. A preliminary solution of the problem, by which an appropriate
value of AX; is fixed upon and a preliminary choice of X3, and
Xm is made.

2. Improvement of the choice of X3, and X4, by a process of succes-
give approximations.

[
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To gain a preliminary estimate of an appropriate value of AX; one
may fit the given curve very roughly by a section of sinusoid (by reference
to Tables A-1 and A-2, or even by a visual estimate) ; the angular range of
this section of sinusoid will be approximately the desired value of AX..
The roughness of the approximation will be evident from inspection of
Figs. 4-14 and 4-16, in both of which the curves correspond to AX; = 90°.
However, the nature of the calculations required in computing double-
harmonic-transformer functions is such that it is desirable to begin an
attempt to fit a given function by fixing on a value AX,, even when the
choice must be made quite arbitrarily. By adjusting the parameters
X3, and X, one can then, in principle, obtain the best fit of the mecha-
nized function to the given function consistent with the chosen AX;; by
repeating this for a series of values of AX; one could at length determine
the best value of this parameter and the best possible fit to the given
function. In practice, it is not necessary to find the best fit carefully for
each AX; Ip the preliminary calculations it is sufficient to use a simple
and easily applied method of fit in choosing X3 and X4, to establish an
equally simple criterion for the accuracy of the over-all fit thus obtained,
and to choose the best AX; in the sense of this criterion. When a value
of AX; has been established in this way, it then becomes worth while to
use more careful methods, described in Sec. 4-13, in the further adjust-
ment of X3, and Xy,

We shall consider separately the quite different methods of getting a
preliminary fit to monotonic functions (Sec. 4-11) and to functions with
maxima and minima (Sec. 4-12).

4-11. Preliminary Fit to a Monotonic Function.—A monotonic func-
tion will in general be fitted by a monotonic function; the range of X, will
not include either 4-90° or —90°. In this case one has automatically a
fit of the generated function to the given function at both ends of the range
of variables. In addition, for any given AX; the values of X3, and X,
can be so chosen that the generated function will (1) agree with the given
function at any chosen pair of interior points, or (2) have the same slopes
as the given function at the two ends of the range of the input variable,
or (3) have the same ratios between the slopes at any three points in the
range of the input variables. The first of these methods of fitting would
in many cases be the most satisfactory; however, it is the most difficult to
apply and will not be considered further. The second method has some-
what wider utility than the third and will be made the basis of our further
discussion.

When X, and X4, are so chosen that the generated function not only
fits the given function at the end points but has the same slope as well, a
satisfactory fit is assured throughout a more or less broad region near
both ends of the range of variables. The fit will then be good everywhere
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if the given function is well adapted to mechanization by an ideal har-
monic transformer with the chosen value of AX;. If the chosen value of
AX; is not appropriate, the central portion of the generated function,
having been subject to no control during this simplified fitting process,
may show marked differences from the given function. As an indication
of the over-all accuracy of fit attained in this process, and of the appro-
priateness of the chosen value of AX, it is natural to take the difference
between the generated and the given functions at the midpoint of the
curve, H, = 4;AX;should then be so chosen as to minimize this difference.

The following steps can thus be used in obtaining a preliminary fit to a
monotonic function:

1. Choose a value of AX;, arbitrarily if there is no guide.

2. Choose X3, and X4, (by a method to be described below) such that
the slope of the generated function has the proper values for
Hi=0and H, = 1.

3. With these values of the parameters, find the value of H; when
H, = 3. (63 can be read from Table A-2, since AX; and X3, are
known; using this value of 85 to enter the column of Table A-1 that
corresponds to the known values of AX, and X,., interpolate to
find the required value of Hs.)

4. The difference d between this and the desired value of Hs is taken
as a measure of the over-all error in the fit.

5. Repeat the preceding steps for several other values of AX;, until
the trend of d as a function of AX; is established.

6. Choose as the value of AX; to be used in further calculations the
one which minimizes [d].

It remains to describe a quick and easy method for finding those
values of X3, and X4 for which the generated function has specified
terminal slopes:

dH3 Q. dH, =
m:)m.o = 8o; (W)_ = 8 (58)

B,
dHy _diy o, _ -
al, ~ 36, dH, = aH, (592

dby

We note that

For mechanical reasons the input transformer must be such that

03=04=0
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when H, = 0, and 6; = 6, = 1 when H, = 1. Thus

@
_ (dH, _ d0s /om0
8o = (d—lh)ﬂ,=o N (@) (80)
dbs Jo,—o
and
(@)
__ {dH, _ dé; fym1_
8= (31, (61)

(%)
dos /sy

In other words, each terminal slope of the graph of the double-harmonic-
transformer operator (H:/H,) is equal to the corresponding terminal
slope for the output operator (H,|6s) divided by that for the input operator
(H1|65). Our problem is thus, in effect, to pick out of the part of Table
A-1 that corresponds to a given value of AX; two columns such that the
ratio of their initial slopes is S, and the ratio of their final slopes is S;.
Consider now Fig. 4-17, which shows the variation with AX; of the

quantity '
dH cos Xim
log1o (—a?)d=0 = logio ((sin X )mae — (sin Xi)m): (62)

for a series of values of X;». On this chart the distance along the vertical
line AX = AX; from the curve X;, = X3 to the curve Xin = Xum
(counted as positive upward, negative downward) is

Lo dH 2 . dH 1
lOgIO Do = IOglo (-Eaa—)h=0 logm (d—os)o,=o, (63)
the logarithm of the initial slope (Zg ) for an ideal double harmonic
1/ Hi=0

transformer characterized by the parameters AX;, X3n, X4m Con-
versely, if we draw a line of length logie So on a strip of paper and move
this, always in a vertical position, over Fig. 417, its ends will continually
indicate the paramaters AX;, Xsn, and X, for an ideal double harmonic

transformer with initial slope Zg ) equal to the chosen value of S,.

Fig. 4-18 presents in a similar manner values of

dH cos Xu
logu (W)M = logu [(sin X — (sin X)m]' (64)

It is obvious that if we draw a line of length logi, S; on a strip of paper
and move it, always in a vertical position, over Fig. 4-18, its ends will
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continually indicate the parameters AX;, Xsn, and X,,, for an ideal double

harmonic transformer with terminal slope (fliz> equal to the chosen
Hy==

dH,
value of Si.

In order to determine the parameters of an ideal double harmonic
transformer for which the initial and terminal slopes have values S, and
S respectively, one may proceed as follows. (Attention will be restricted
to cases in which S, and S, are both positive; a case in which both slopes
are negative can be reduced to this case by replacing X, by X4m + 180°.)
At the edge of a strip of paper draw an arrow of length |logio S| (using
the scale at the left of Fig. 4-17) and place it on Fig. 4-17, directing it
upward if logyo Sois positive and downward if this is negative. Similarly
construct an arrow of length |logi Si| and place it on Fig. 4-18, directing
it upward or downward according as logi, S is positive or negative. If
these arrows are placed on vertical lines corresponding to the same
AX = AX;, with the heads of both arrows on curves corresponding to the
same X, = X, and the tails on curves corresponding to the same
Xm = Xi3m, then these values of AX;, X;,, and X, give simultaneously
the desired initial and final slopes. Such positions for the arrows can be
- found quickly, for any specified AX;, by placing the tails of the arrows
successively at several values of X3,, until a value is found for which the
heads of the arrows also lie at the same X .

Ezxample: As our principal example of double-harmonic-transformer
design we shall take the problem of mechanizing the relation

72 = tan x, (65)
previously considered, over the larger range 0° < z; < 70°,
0 < 2, £ 2.7475.

On introduction of homogeneous variables

I (66)

= L By = -2
70°" * T 27475

this relation becomes
2.7475h, = tan (h; - 70°) (67)

This is tabulated for uniformly spaced values of h; in Table 4-4. The
slope of the curve in homogeneous variables is
dhs .
dTl = 0.4447 sec’ 1, (68)
and the terminal slopes are 0.445 and 3.802.
For a preliminary fit we try AX; = 90°. We place on the correspond-
ing line in Fig. 4-17 an arrow of length |logi, 0.445|, and on that line in
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TABLE 44.—z; = TAN z;, 0 = z; £ 70°, IN HoMOGENEOUs VARIABLES
he
.0000
.0447
0907
1397
1935
2549
3277
4187
5396
7143
0000

HOOOOOOOOOO;‘
OISO WN~=O"
—HOoOO0ODDOoLoQCOoOOoCOC

Fig. 4-18 an arrow of length log,, 3.802. We note that if X3, = 10°, cor-
rect initial slope requires X4, = —58° (Fig. 4:17), and correct final slope
requires X4n, = —52° (Fig. 4-18); if X3, = —15° correct initial slope
requires Xy, = —62° correct final slope requires Xsn, = —75° Inter-
polating to zero difference of the values of X,,,, we have a set of constants
agsuring correct terminal slopes:

AX; = 90°, X3m = —12°, Xim = —59°.

Assuming these constants, we now compute H, for H, = }. First
we center attention on the input harmonic transformer and determine
0; = 64 in Table A-2, AX; = 90°, we interpolate between columns for
X, = —15°and X;,, = —10° for H = §, X;, = —12° we find

8; = 0.385 = 0; = 0,.

Turning attention to the second transformer, we can now determine Ho:
interpolating between columns of Table A-1 for AX; = 90°, X,,, = —60°
and X, = —55° we find that H = 0.325 when X, = —59° and
6; = 0.385. The desired value of H., read from Table 4-4, is 0.255; the
curve thus fitted lies too high in the center by d = 0.070.

Next we try AX; = 70°. Moving the arrows to the corresponding
lines of Figs. 4-17 and 418, we find that correct terminal slopes are
obtained by using

AX,; = 70° X3 = 8°, X4m = —56°

With these constants, if H, = %, then 6; = 0.371, H, = 0.308, d = 0.053.

Trial of still smaller values of AX; shows that d can be decreased only
slightly below this value; an exact fit of terminal slopes will always lead to
a generated curve too high in the middle. The “best” value of AX;, in
this sense, is a little smaller than is mechanically desirable, and not much
can be gained by adopting precisely this value instead of a larger and more
convenient one. In the further discussion of this problem we shall
therefore fix AX; = 90°.
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4.12. Preliminary Fit to a Nonmonotonic Function.—Nonmonotonic
functions that can be generated by an ideal double harmonic transformer
possess only a single maximum or minimum. Expressed in homogeneous
variables, they fall into four types illustrated in Fig. 4-19:

(a0) H,=0 when H, = 0.
() H:=0 when H, = 1.
(¢) Hy =1 when H, = 0.
d H:=1 when H,

As with monotonic functions, it is possible to find, for any given AX;
values of X3, and X, that make the terminal slopes of the generated
function equal to those of a given nonmonotonic function. However, a
fit of the value of the generated function to that of the given function is
assured at only one end of the range of H,: for H, = 0 with types (a) and

Il
=

(@ (b) () @

Hl Hl
Fi16. 4-19.—Types of functions mechanizable by an ideal double harmonic transformer.

(¢), and for Hy = 1 with types (b) and (d). Agreement of the slopes at
the other end of the range of H, thus does not assure tangency of the
given and the generated functions, and the fit may be very unsatisfactory-
For this reason it is not advisable to make a preliminary fit to a given
nonmonotonic function by the method of Sec. 4-11. It is usually best to
choose a value of X4, such that a fit in the value of the function is secured
at the end where this is not otherwise assured, and then make the maxi-
mum or minimum in H} occur for the proper value of H.; as an indication
of the accuracy of the over-all fit one can take the difference between the
given and generated functions at a chosen point between the maximum
or minimum and the more remote end of the range of H;.

The procedure for securing a preliminary fit to a nonmonotonic func-
tion is then as follows:

J. Choose a value of AX;, arbitrarily if necessary.
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2. Referring to Table A-1, choose X, such that H, has the desired
value when 8; = H, = 1, for types (a) or (c), or when 8; = H, = Q,
for types (b) or (d).

3. From the same column of Table A-1 read the value of @; for which
H, = 1 [types (a) or (b)] or the value of 8; for which H; = O [types
(¢) or (d)].

4. From the given function, determine the value of H; for which
Hs = 1 [types (a) or (b)] or the value of H, for which H; = 0 [types
(c) or (d)]

5. By reference to Table A-1 or A-2, for the same AX;, find the value of
X3 for which the value of 0; determined in Step (3) corresponds to
the value of H, determined in Step (4).

6. For these values of AX;, X;,, and X,,, determine the difference d
between the generated function and the given function at the
chosen test value of Hi.

7. Repeat the preceding steps for several other values of AX;, until the
trend of d as a function of AX; is established.

8. Choose as the value of AX; for use in further calculations that which
minimizes |d|.

Example: As an example, we take the problem of making a preliminary
fit to the curve (H2|H,) of Fig. 4-16—a case in which we happen to know
that an exact fit can be obtained. The curve is of a borderline type,
belonging to types (a) and (). For the purposes of the preliminary fitting
we desire

Hy; =0 when H, = 0,
H:=0 when H, = 1,
Hy,=1 when H, = 0.38.

For test purposes, we shall compare the generated function with the given
function when H; = 0.70 (desired value, H, = 0.710).

First, choose AX; = 70°. In Table A1 we find that H; = 0 for both
6; =0 and 8; = 1 if X, = 55°; from the same column we see that
Hy = 1 for 6, = 0.5. The desired X3, must then make 8; = 0.5 cor-
respond to H, = 0.38. From Table A-1 it is evident that

—75° < X < —T0°

interpolating, we obtain X;., = —72°

To test the over-all fit given by AX; = 0.70, X3, = —72° X,,, = 55°,
we compute H, for Hy = 0.70. Interpolatingin Table A-2 (since H hasa
value appearing there) between columns corresponding to X3, = ~70°
and X = —75°% we find 6; = 0.771. Returning to Table A-1,

X¢m = 550,
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we obtain by linear interpolation H, = 0.692 for 6; = 0.771. Linear
interpolation, however, is here obviously inadequate; quadratic interpola-
tion yields H, = 0.700, d = —0.010.

Repeating the process with AX; = 90° we find that little interpolation
is necessary. To make Hs = 0 for 83 =0 and for 6; = 1 requires
Xim = 45°; the maximum comes for 8; = 0.5, H; = 0.38; hence

Xom = —75°

Computing H; for H, = 0.7, we obtain essentially the graphically deter-
mined value, 0.710, and d =~ 0.

Although AX; = 90° is the best value, it is evident that the fit is not
very sensitive to the choice of AX.

4-13. Improvement of the Fit by a Method of Successive Approxima-
tions.—A satisfactory fit of the generated to the given function is not
assured by the simple and rather arbitrary methods just described; these
should be depended upon only in choosing a value of AX;. The final
adjustment of X, and X.n, to obtain the best over-all fit possible with
the chosen AX;, is most satisfactorily accomplished by a graphical method
of successive approximations which gives a complete view of the fit at
each stage of the process. Convergence of the successive approximations
on the final result can be speeded up by exercise of the superior judgment
of an experienced designer, but a satisfactory result is assured even for a
beginner.

The problem to be solved is that of finding ideal harmonic trans-
former operators (H|8;) and (85|H1), both corresponding to the chosen
AX;, which make the approximate relation

(Hs|6s) » (8s|H1) = (Ha|Hy) = (halhy) (69)

as nearly exact as possible over the entire range of variables. This will
be done by alternately improving the choice of the two harmonic-trans-
former operators—that is, the choice of the parameters X,, and X,
respectively.

Let the harmonic-transformer operators chosen after S stages in the
approximation be (H,|0s)s and (83]H1)s.
Then

(Ha|83)s - (6s]H1)s = (halha). (70)

Let it be desired to replace (H,|605)s by an operator (H3|83)s41, which
will make the approximation of Eq. (70) more exact. Let the operator
Zs be defined by

(h2lh1) - (Hi|8a)s = Zs. (71
Then
Zs = (Ha|63)s, (72)




92 HARMONIC TRANSFORMER LINKAGES [Sec. 4-13

as may be shown by multiplying Eq. (70) from the right by the operator
(H1|6s)s. If this approximation were exact, Eq. (70) would necessarily
be exact; if thus approximation is improved, that of Eq. (70) will be
improved. Now Zs can be computed with sufficient accuracy by graphi-
cal methods. If it is possible to find an ideal-harmonic-transformer
operator (H,|6;)s.1 which gives a better fit to Zs than does (H1|6s)s, then
this is the desired improved operator; the approximation in the relation

(H3|03)s41 - (85{H1)s =~ (ho|h) (73)

is better than that in Eq. (70).
Next one will wish to replace (83/H:)s by an improved operator
(03| H 1)s+1. Let the operator Ysyy be defined by

(he|hy) - Ypr = (Ha|03)s41. (74)
By Eq. (73)
(H1|03)s =~ Ys+1. (75)

An improved operator (Hi|6s)s;1 would make this approximation more
exact; one can therefore determine it by computing Ys,: by graphical
means and finding the ideal harmonic transformer function that best
fits this function. The approximation in writing

(H2|03)s41* (83| H1)sp1 = (helhi) (76)

is then even better than that in Eq. (73).

It is now possible to make a further improvement in (H,|6s), comput-
ing Zs.1 by Eq. (71) and fitting (H2|8s)sy2 to this as exactly as possible.
The operator (83|H1) can then be improved again, and the process repeated
until the improvement obtained does not repay the effort expended. Itis
of course possible that a satisfactory fit can not be given by any ideal
double harmonic transformer; it will then be necessary to make use of
methods to be described later in this chapter.

Example: We return to the Example of Sec. 411, the mechanization
of the tangent function from 0° to 70°. We there fixed on the value
AX; = 90° and found approximate values of X3, and X4.. Rounding
off these values to those appearing in Table A-1, we might take

(H2|03) ~ X4m = —60° (77)
(03|H1) ~ Xam = —50. (78)

These values, especially the second, are good. In order to provide a
better illustration of the method of successive approximations we shall
deliberately select a poorer value, X3, = —15° with which to start the
computations.

Figure 4-20 shows a graph of the given function (hy|h,), points on
the graph of (H,|83), ~ —15° < X; £ 75° as read from Table A-1, and
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the construction needed to determine corresponding points on the graph
of Z1, which has been drawn in as a continuous curve. A good over-all
fit to Z; can not be found in Table A-1 (AX; = 90°!), but a reasonable

fit at the lower end is obtained by taking Xs»w = —70° as shown in
the same figure. Therefore, as the basis for the next step in the com-
putation we make (H|0s)2 correspond to X,, = —70°,

e

(H,163), (-15°+75")
~

v?zvhlo
(H,16,),(-70"—20%)

vz

F1a. 4:20.—Mechanization of z; = tan z;. First step in the method of successive
approximations: construction of the operator Z; and approximate fitting of this by

(Hs|03)1 ~ AX; = 90°, Xim = —70°.

Next, Fig. 4-21 shows the construction used in determining Y:. (In
practice this would be carried out on the same graph as the construction
for Z,, but for the sake of clarity a new figure is used here.) The
operator (H1|83)z can be made to fit this fairly well by taking Xs, = —5°.

Repetition of this process will lead to little further improvement.
It can be seen in Fig. 4-23 that Zs is perhaps best fitted by the value of
Xym, —70°, arrived at in Fig. 4-20. It would be of little value to reduce
the error further by interpolation in the tables; the solution would in
any case apply only to an ideal double harmonic transformer, which
could be realized only by using undesirably complex mechanisms or
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(H10,),(-5>> 85

7

(hyl hy)

iV
/!

(H,16,),(~70%> 20°)

L
L

Fi1a. 4:21.—Mechanization of x2 = tan z,. Second step in method of

successive

approximations: construction of the operator Y, and approximate fitting of this by

(Hllﬁ:)zNAX;' = 90", X.'m = —5°
Xp=20°
1.0
1 1
I
l
{\( 0.5 |
—— X,
\ | 2 é —_—
A
\L
'11.0
X33~ 85
Hz IJ IR T
0.0 05 1.0

Fia. 4-22.—Ideal double harmonic transformer approximately mechanizing s

= tan z;,
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nomdeal double harmonic transformers with very long links. It is
better to design the transformer as nonideal, further reducing the error
by adjustment of link lengths and slide positions, as explained in Sec. 4-13.

Figure 4-22 shows the ideal double harmonic transformer correspond-
ing to the present stage of solution of the problem. The cell has been
normalized by making

Rf(In X 1)mar ~ (8i0 X D)min] = Ro[(8ID Xo)mae — (SI0 Xo)min).  (79)

4.14. Nonideal Double Harmonic Transformers.—The field of
mechanizable functions is very substantially extended if nonideal har-
monic transformers are coupled instead of ideal ones. (A typical non-
ideal double harmonic transformer is shown in Fig. 4-26.) Instead of
three independent parameters, there are seven to be adjusted: AX; = AX,,
Xsmy Xam, L1, L2, E¥. and E}. Here, as before, the lengths L, and L,
of the links are to be measured in terms of the horizontal travels AX,
and AX,, respectively. E¥ is the reading on the H¥-scale where it is
intercepted by the center line of the X1 slide, and E¥ is the reading on
the H¥-scale where this is intercepted by the center line of the X} slide.
The Peaucellier inversor shown in Fig. 2-4 is a special case of the non-
ideal double harmonic transformer, with X,, = X4., L = L, and
E* = E¥ = 0; it is thus evident that such devices can serve for the
mechanization of functions that are not even roughly of sinusoidal form.

To determine the function generated by a given nonideal double
harmonic transformer one can apply the method described in Sec. 48,
obtaining the operator (H: H,) as the product of operators (H;|8;) and
(65]H,), which describe the component nonideal harmonic transformers.

In the converse problem of mechanizing a given function by a non-
ideal double harmonic transformer it is not feasible to vary all seven of
the available parameters simultaneously. One should begin as though
the double harmonic transformer were to be ideal, carrying out an
approximate fit (Secs. 4-11 and 4-12) to determine a value of AX;, which
is held comstant thereafter, and then improving the choices of X3, and
X (x (Sec. 4-13) until this ceases to be profitable. At this point it becomes
necessary to begin the adjustment of Ly, Ly, E¥, Ef. Since the device
may be regarded as two nonideal harmonic transformers in series, the
problem to be solved is still formally the same as that considered in
Sec. 4-13—that of making the approximation in

(Hq|03) - (85)H1) = (Ho|H1) = (holky) (69)

a8 nearly exact as possible—and the method of solution by successive
approximations is the same. Here, however, each of the component
transformers is characterized not by one, but by three constants, (X3,
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E%, L) or (X 4m, E¥, Lo}, which must be chosen at each stage of the process
—for instance, by the methods of Sees. 4-4 and 4:8.

Example: We continue the example of Sec. 4-13, that of mechanizing
the tangent function from 0° to 70°. Figure 4-23 shows the construction
of Z,, to fit which we shall now adjust the three constants characterizing
(H¢:|03): X 4m, E¥, and Ly. As already noted, the best fit obtainable with

P4

(H,16y),(-5" = 85°) z, .

/]

(H3103)3(-70"—=20" E*=0.5,L=-2)

N

(H;103),(-70°~=20°)

é/

F1a. 4-23.—Mechanization of z; = tan z:. Third step in method of successive approxi-
mations: construction of the operator Z. and approximate fitting of this by

(Hs|82)2 ~ AX; = 90° Xim = —70° (... ),
and by (Hz|03)s ~ AX; = 90°, Xip, = —70° E* = 0.5, L = —2 (crosses).

an ideal-harmonic-transformer operator is given by X.. = —70°
X 4m = 20°; the residual error then changes sign twice, tending to be
large near the ends of the range of variables. Now the limits of X, here
are roughly the same as those of the example of Sec. 4-8 (—15°, 75°)
except for a change in sign, and the geometrical situations differ only as
mirror images if one replaces a link to the left by a link to the right, and
vice versa. Correspondingly, one easily sees, the structural error func-
tions 8H; applicable here differ from those of Fig. 4-10 in replacement of
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6 by 1 — 6;, that is, reflection of the curves in a vertical line. Thus it
is evident that it is not possible, by any choice of £¥ and L,, to obtain a
structural-error function that changes sign twice, such as is needed to
give a good fit to Z, over the whole range of variables. We shall there-
fore concentrate our attention on improving the fit for low values of 4,
raising the curve in this region, and attempting only to keep the change
small elsewhere. Inspection of Fig. 4-10 then shows (the differences of

Y5

(-7.5 825"
> /
A
(H,18;)3(~7.5°"—82.5;
E™02 L=+2)
(H,| 65)5(-70°— 207
E%05,L=-2)
(halhy)

o

F1a. 4-24—Mechanization of z2 = tan x1. Fourth step in the method of successive
approximations: construction of the operator Y3 and approximate fitting of this by an
ideal-harmonic-transformer function with AX; = 90°, X;m = —7.5° (circles) and by
(Hi|83)s ~ AX; = 90°, Xim = —7.5°, E* = 0.2, L = 2 (crosses).

the present from the former case being borne in mind) that E} = 3 is
an appropriate value, and that L should be negative, the link to the right.
Rough consideration of the magnitudes involved leads to choice of

= —2. The resulting fit, as shown in Fig. 4-23, is quite satisfactory
for low values of 6.

The process of successive approximations is continued in Fig. 4-24
with the graphical construction of ¥;. We have now to fit (H1|6s)s to
this by choosing Xsn, E¥, L1. Inspection of Table A-1 shows that with
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Xsm = —5° one has a bad fit at the left, and with X,,, = —10° the curve
is much too low in the middle. In such a case it is desirable to inter-
polate. We choose X3, = —7.5°. The values of the corresponding

function are found with sufficient accuracy for our graphical method by a
linear interpolation in Table A-1;the resulting values are plotted in
Fig. 424 as a series of points in small circles. In further improving the
fit one will wish to raise the central part of the curve, to depress the

\
y
(H, qeg)a(-7.5°—-82f’; E*02,L=+2) )
\ (Hy163),(~7 5—15°
/ E%0.42,L=-08)

; ] \
9/ (-75"——15“’)
|

F1a. 4-25.—Mechanization of z: = tan z1. Fifth step in the method of successive
approximations: construction of the operator Zs, and approximate fitting of this by (H2]83)+:
AX; =90° X;,, = —75° E* =042, L = —0.8.
extreme upper end, and to leave the lower and unchanged. The values
of X3 and X;u are sufficiently like those of Fig. 4-10 for this to be used
as a guide; it is again evident that no choice of constants can accomplish
everything that is desired. We choose therefore to allow a considerable
error at the lower end of the curve, leaving this to be corrected (as before)
by our choice of Ef and L,; we concentrate on improving the fit at the
upper end, and, secondarily, that in the central region. Inspection of
Fig. 4-10 leads to choice of E¥ = 0.2and L = 4+2. Computation of the
structural-error function then leads to the corrected points of Fig. 4-24,
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indicated by crosses. It is evident that a value of E} nearer to zero
would have been preferable, as giving a depression of the curve over a
less extended region. However, it is hardly worth while at this stage
of the computation to make a more careful choice of constants, and we
accept the resulting function as (H,|6s)s.

The next stage of the calculation, the determination of (Hy|8s),, is
shown in Fig. 4-25. When Z; is constructed it is found that a better
fit can be obtained at the upper end by taking Xs, = —75° than by
taking X;, = —70°. The error functions shown in Fig. 4-10 then
apply exactly, with the substitution 6; —1 — 6. Since preliminary
fits have been made in all parts of the range of 6;, it is now worth while
to make a careful .adjustment of the constants E; and L, as by the
methods of Sec. 4-8. With Ef, = 0.42, L, = —0.8, one finds exactly
computed points that give an excellent fit except at the extreme upper
end of the curve. This is very satisfactory, as it is in this last region
that the fit is being controlled by choice of E¥ and L.

The final graphical stage of the solution, the determination of (H4|83)4,
is not illustrated by a figure. It leads to the choice of Xsn = —7.5°%
E¥ =02, L, = 41.8, with an excellent over-all fit. This is as far as
the fit can be carried by these graphical methods; further refinements are
best obtained by the methods discussed in Chap. 7.

We have thus arrived at the following choice of constants:

Xsm = —'7.50, Xau = 82.50, 1’ = 02, L1
X4m = —'750, X“l = 15°, E; = 042, Lg

1.8, (80a)
—0.8. (80B)

]

Calculation of the resultant total structural error is illustrated in
Table 4-5, which consists of three sections. The first shows the calcula-
tion, by the method described in Sec. 4'6, of values of the homogeneous
input parameter Hj for a series of values of ;. The second shows the
calculation of values of the homogeneous output parameter H} for the
same series of values of 6;. In the third section there are shown cor-
responding values of

z, = H{-70° (81)
the generated tangent function
:cQ,, = H; tan 70°, (82)

the ideal tangent function z, = tan z;, and the ideal generated homo:
geneous variable ks,  The error in the generated function, dhe = Hj — hs,
is found to be less than 0.8 per cent of the total variation of the output
variable.

The linkage corresponding to these constants is drawn in Fig. 4-26.
Reduction of the linkage to the normalized form shown here requires a
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TABLE 4-5.—~CoMPUTATION OF THE TOTAL STRUCTURAL ERROR (LINKAGE OF F1G. 4-26)

H. Sll;lél DH,. Hl
8| H: _b* =fx 1 —cosel =L X + DH, H,
1 > _1 B (1 — cos e1)| — (DH,)q

(H4)85)« |0.0{0.0000| 0.7887| 0.3396 0.0594 | 0.1069 0.0000 [0.0000
0.1(0.1398] 0.7986| 0.3438 0.0610 | 0.1098 0.1427 [0.1586
0.2(0.2791| 0.7801| 0.3358 0.0581 | 0.1046 0.2768 |0.3076
0.3/0.4143| 0.7337| 0.3159 0.0512 | 0.00 2 0.3996 ,0.4441
0.4/0.5421] 0.6605 0.2844 0.0413 | 0.0743 0.5095 [0.5662
0.5)0.6586] 0.5624) 0.2421 0.0297 | 0.0535 0.6052 (0.6726
0.6{0.7633| 0.4418| 0,1902 0.0183 | 0.0329 0.6893 [0.7661
g1 =0.7749(0.7/0.8513] 0.3016, 0.1298 0.0085 | 0.0153 0.7597 |0.8443
0.8]0.9211| 0.1453 0.0626 0.0020 | 0.0036 0.8178 (0.9089
ﬂ=0_4305 0.910.9711;-0.0233 0.0100 0.0000 | 0.0000 0.8642 |0.9605
L, 1.0(1.0000{ —0.2000| 0.0861 0.0037 | 0.0067 0.8998 i1.0000

H} . 2, /

0; Hz _ E* Sin e 1 - COS8 €3 DHz + DH2 Hz

? — (DHq)o
(H1)83)4 0.0|0.0000| —0.4200,—0.3178) 0.0518 | 0.0414 | 0.0000 [0.0000
0.1/0.0428| —0.2204| —0.1667| 0.0140 | 0.0112 [ 0.0730 |0.0750
0.2/0.1038| —0.0344/—0.0260 0.0003 | 0.0002 ; 0.1450 [0.1490
0.3|0.1819] 0.1336f 0.1011 0.0051 | 0.0041 | 0.2192 [0.2252
g: = 0.6052 [0.4/0.2748| 0.2793] 0.2113] 0.0226 | 0.0181 | 0.2981 |0.3063
0.5[0.3804| 0.3992| 0.3020] 0.0467 | 0.0374 | 0.3844 |0.3950
0.6(0.4961] 0.4904] 0.3710{ 0.0714 | 0.0571 | 0.4804 |0.4936
g 0.7/0.6189| 0.5505| 0.4164/ 0.0908 | 0.0726 ; 0.5877 [0.6039
.= 0.7564 10.8/0.7459| 0.5782| 0.4374| 0.1007 | 0.0806 | 0.7067 |0.7262
2 0.9|0.8740 0.5726] 0.4331| 0.0986 | 0.0789 | 0.8365 [0.8595
1.0{1.0000] 0.5340{ 0.4040| 0.0852 | 0.0682 | 0.9732 |1.0000
8 z1, degrees Tog tan z, he 8hs

0.0 0.00 0.0000 0.0000 0.0000 0.0000

0.1 11.10 0.2061 0.1962 0.0714 0.0036

0.2 21.53 0.4094 0.3945 0.1436 0.0054

0.3 31.09 0.6187 0.6030 0.2195 0.0057

0.4 39.63 0.8416 0.8282 0.3014 0.0049

0.5 47.08 1.0853 1.0754 0.3914 0.0036

0.6 53.63 1.3562 1.3579 0.4942 —0.0006

0.7 59.10 1.6592 1.6709 0.6081 —0.0042

0.8 63.62 1.9952 2.0163 0.7339 —0.0077

0.9 67.24 2.3615 2.3836 0.8675 —0.0080

1.0 70.00 2.7475 2.7475 1.0000 0.0000
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slightly different calculation from that in the case of ideal double har-
monic transformers (Eq. 79). Perhaps the simplest method is to choose
arbitrary values of E; and R,, and to compute the corresponding travels
AX; and AX/ from the geometry of the linkage. Since these travels
are proportional to the R’s, and are to be equal in the normalized ecell,
one has as the ratio of the normalized arm lengths

&‘ = El A_X;. (83)
R,. R:AX]
AX,
AX,
\
AX!
AXS H, !
- F~H—
il S ==
1 ’ ~ 1= ——— Z
0.42AX3 o E%ﬁ T E— J 028xT
lx’
2
Ax{ AX]

¥F1a. 4-26.—Nonideal double harmonic transformer generating, approximately, z: = tan z1,
0 < 21 < 70°. Values of the constants are given in Eq. (80).

4.15. Alternative Method for Double~-harmonic-transformer Design
The graphical method described in Sec. 4-14 has the advantage that it
permits readjustment of the constants X3, and X4, at all stages of the
design process. The alternative method to be described in the present
section is useful when values of AX,, X3n, and X, can be considered as
fixed; it is essentially an extension of the method of Sec. 4-8, which per-
mits simultaneous adjustment of the constants L., L., E}, E¥, of the
two harmonic transformers.

Let us assume that a given relation

hy = (h2]hl) < h1 (84)

has been mechanized approximately by an ideal double harmonic trans-
former that generates the relation

Hy = (Ho|Hy) - Hy (85)
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between its input and output parameters. This relation we canexpress
parametrically in terms of the angle 8;:

H, = H.(8s), }
H. = H(03).

Without changing the constants AX3, Xan, Xn of this linkage, let the
ideal harmonic transformers be replaced by nonideal ones. The input
and output parameters will then be H{ and H;, differing from H; and
H; by the structural-error functions éH, and 6Hs:

Hi(8:) = H.(63) + 3H(65), ]
H,(05) = Hq(8s) + 5H2(83).

The resulting nonideal double harmonic transformer will then generate
a relation

(86)

(87)

H; = (H3HY) - Hi. (88)

Our problem is to assign to the constants Ly, L, E¥, E¥, values such that
Eq. (88) will approximate as closely as possible to the given relation,
Eq. (84), when H] takes over the role of H,, Hj that of H,.

It was shown in Sec. 48 that when 8H; and 8H, are small one can
write

SH1 = af1(83) + bf2(8s), (89a)
8H3z = ¢fs(6s) + df4(8), (898)
where

_ 9 _ giE?

¢=ary b= %ry
5 2 e (90)

c= 91 g GEY

2L 2L,

The functions f1(83) and f2(8;) can be computed using Egs. (39) and (40),
with H, replaced by H1(6s); f3(6:) and fi(6s) are also computed by Eqgs.
(39) and (40), respectively, with H; replaced by H:(83).

Let it be desired to choose the constants a, b, ¢, d, in such a way that
the linkage generates the desired relation exactly for some fixed value of
B,: .

hi(83) = H1(83) + af1(8s) + bf2(03), (91a)
ha(83) = H2(83) + cfs(6s) + dfu(85). (91b)

Equation (84) specifies which values of h; and h; must correspond to
each other, but there is nothing to prescribe which pair of values (hy, 22)
must correspond to any given value of ;. We could, for instance, pick
this pair arbitrarily and still satisfy Eqs. (91) by properly choosing the
disposable constants. However, we do know that if Eqs. (91) are to
be accurate 6H; and 8H; must be small; 2,(6;) must be nearly equal to
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H1(03), he(03) nearly equal to Hs(6s). We therefore place on our choice
of the pair of values (hi, he) only the condition that

hi(8s) = H1(6s) + Ahy, (92)

where Ah;issmall. The corresponding value of hs(8;) is easily computed.
Let

hz = h(zo)(03) when h1 = H]_(oa) (93)
Then
dhs
ha(0;) = h®(0s) + « Ah,, (94)
dhl hi=H1(031)

to terms of the first order in the small quantity Ah;. Combining Eqgs.
(91,) (92), and (94), we find that the conditions to be satisfied are

afi(63) + bf2(0s) = Ahy, (95a)
fs(03) + dfu(09) = hP(8s) — Ha(6s) + ‘”” - Ahy. (95b)

Eliminating Ah, from these equations, we have

_a(d"”) fu(6s) — (‘”‘” Fa(65) + ofs(Bs) + df(6s)
= h{P(6;) — Ha:(83). (96)

This is the only condition that must be satisfied by the constants a, b,
¢, d, so long as no attempt is made to control the value of the small
quantity Ah,.

Since one can satisfy simultaneously four conditions such as Eq. (96),
it is possible to make the linkage generate the desired relation exactly
at four chosen values of 8. One has to solve four simultaneous linear
equations in the four unknowns a, b, ¢, d:

a(2)  pep) — b (‘L’“) 12(09) + ofs(65) + df(65°)
dh1 (1 dhl 851
= RP(00) — Ho(650),

- (i%)ef &%) — b (ZD 09 + ofs(00) + df.(88)
= hP(65°) — Ha(65).

The constants of the linkage can then be computed by Egs. (90). This
should be followed by exact calculation of the function generated by the
linkage, as in the example of Sec. 4-14.

Ezample—To illustrate this method we shall treat again the example
considered in Sec. 4-14. Here, however, we shall accept as fixed the

h .
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constants arrived at in Sec. 4-13,
AXs = 900, Xam = -—5°, X4m = _'700; (98)

(cf. Fig. 4-22) and shall adjust only the constants L,, L, E¥*, E&.

The function Hj(H,;) generated by the linkage of Fig. 422 can be
written down in parametric form by reference to Table A-1, the values
of H; being found in the column AX; = 90°, X, = —5°; the values of
H,, in the column AX; = 90°, X, = —70°. These are shown in Table
4-6, together with the corresponding values of 2" [computed by Egs.
(65) and (66) with A set equal to Hi] and the over-all structural error.
The structural-error function exceeds 3 per cent of the total travel; by
choice of the four disposable constants we shall now attempt to reduce
this error to zero for 6> = 0.2, 0.4, 0.6, and 0.8.

TaBLE 4-6.—FuncTION GENERATED BY LINKAGE oF Fig, 4.22

' H,; H, h((;) h(g) — H,
0.0 0.0000 0.0000 0.0000 0.0000
0.1 0.1448 0.0508 0.0650 0.0142
0.2 0.2881 0.1183 0.1337 0.0154
0.3 0.4262 0.2010 0.2087 0.0077
0.4 0.5559 0.2969 0.2938 -0.0031
0.5 0.6738 0.4034 0.3926 —0.0108
0.6 0.7771 0.5181 0.5083 —0.0098
0.7 0.8632 0.6381 0.6413 0.0032
0.8 0.9301 0.7604 0.7843 0.0239
0.9 0.9761 0.8820 0.9159 0.0339
1.0 1.0000 1.0000 1.0000 0.0000

We have first to give explicit numerical form to Egs. (97), which
determine the constants a, b, ¢, d. Values of HY and H¥ are read from
Table A-1, for the chosen values of 6;; the f's are then computed as

explained below Eq. (90). Values of Z—Zi can be computed by Eq. (68)

TaBLE 4.-7.—CoNSTANTS REQUIRED IN DESIGN PROCEDURE

6 wE | ey | g | HE | e | fen | O

0.9958 | ...... | ........ 0.0000 | .... .| ... L
0.9719 | 0.2587 | —0.5260 | 0.4159 | 0.0754 | —0.6169 | 0.5046
0.8435 | 0.2836 | —0.8025 | 0.7402 | 0.3030 | —0.9410 | 0.7344
0.6232 | 0.1736 | —0.8025 | 0.9411 | 0.4582 | —0.9410 | 1.3121
0.3326 | 0.0433 | —0.5260 | 0.9991 | 0.3709 | —0.6169 | 2.5094
0.0000 | ...... e 0.9083

~ooo00
QU D WO
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with z; = 70° X H,. All these quantities appear in Table 47. By
using also the last column of Table 4-6 we can easily determine all the
constants of Eqgs. (97):

—0.1305a + 0.2654b + 0.0754c — 0.6169d = 0.0154
—0.2083a + 0.5894b + 0.3030¢c — 0.9410d = —0.0031

—0.2278a + 1.0530b + 0.4582¢ — 0.9410d = —0.0098 ©9)
—0.1087a + 1.3199b + 0.3709¢ — 0.6169d = 0.0239
Solution of these equations yields
a = 0.1966, b = 0.0566, c = —0.1874, = —0.0651. (100)
Hence, by Eqs. (90),
L, = 1.806, L, = —0.703, Er = 0.288, * = 0.347. (101)

The constants specified by Eqgs. (98) and (101) are not very different
from those found in Sec. 4-14, and the linkage would closely resemble
that of Fig. 4-26. The exact total structural error of the new linkage is
given in Table 4-8: it is about a third of that of the first design. At first
sight it may appear surprising that the error does not vanish for 8; = 0.2,
‘0.4, 0.6, 0.8, since this was the condition applied in determining the
constants of the linkage. It is to be remembered that the equations on
which this method is based are approximations obtained by treating e

TaBLE 4-8.—ToTtaL STRUCTURAL ERROR IN SECOND MECHANIZATION OF x5 = tan x,

O < Iy < 70°

05 , Hy =k H,; he 8hs

0.0 0.0000 0.0000 0.0000 0.0000
0.1 0.1589 0.0734 0.0715 0.0019
0.2 0.3074 0.1460 0.1435 0.0025
0.3 0.4429 0.2212 0.2187 0.0025
0.4 0.5643 0.3020 0.3001 0.0019
0.5 0.6709 0.3908 0.3899 0.0009
0.6 0.7628 0.4905 0.4901 0.0004
0.7 0.8409 0.6024 0.6026 -0.0002
0.8 0.9061 0.7268 0.7280 -0.0012
0.9 0.9589 0.8609 0.8624 ~0.0015
1.0 1.0000 1.0000 1.0000 0.0000

as a small angle. The error computed by these formulas does vanish
at the specified values of 63, but there are present other and larger errors
due to the use of the small angle approximations, which are, essentially,
those disclosed by the exact calculations on which Table 4-8 is based.
We could make allowance for these errors, approximately, by repeating
the calculation, taking as the constants on the right-hand side of Egs.
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(99) sums of corresponding entries in the last columns of Table 4-6 and
4-8. Such a refinement would be worth while only if the mechanism
were to be constructed with exceptional care.

In Sec. 6:6 we shall meet a problem in which the straightforward
application of this method leads to a less satisfactory result; the required
modification of the method will be described there.



CHAPTER 5
THE THREE-BAR LINKAGE

6-1. Fundamental Equations for the Three-bar Linkage.—A three-bar
linkage (Fig. 5-1) consists of two cranks, Bi, A,, pivoted on a frame and
connected through a link B;. The symbols Ay, By, Az, Bs: will be used
to represent distances between the pivotal points within the correspond-
ing mechanical parts: B; and A. are the lengths of arms of the cranks,
B, is the length of the connecting link, and A, is the distance between
pivots in the frame.

The three-bar linkage serves as a mechanical cell having one of the
cranks as the input terminal, the other as the output terminal. The

Fr1a. 5-1.—Symbols used in the discussion of three-bar linkages.

input and output parameters, X;, Xa are rotations of those cranks
measured clockwise from a zero line passing through the pivotal points,
8; and 8, of the cranks; the zero position for each crank is that in which
it points toward the left.

The funectional relationship of the parameters X, X, follows from
the geometry of the quadrilateral 8:T:17:S..

To find X, graphically for a given X, and dimensions A;, B), 43, By,
one would first construct the zero line S,S; and the line of the input
crank, S;T:,. Theend 7 of the output erank must lie on a circle of radius
B; about T, and on a circle of radius A, about S.. If these two circles
intersect, a solution for X exists; in general they will intersect in two
points T2y, T2, which are vertices of two congruent triangles, T18:Ts.
and T1S:T:_. Let »; be the principal value of the angle 8,8.T, lying

107
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between —180° and +180° and n, the principal value of the angle
T.8eTs., lying between 0° and +180°. There are then two possible
values of X,:

Xop = n1+ ne,

Xoo = m — na. (1)

In terms of the problem specitied here, X, is thus a double-valued func-
tion of X,; the functional relation X, = (X,|X,) - X; has two branches,
represented by the operators (X,.|X:) and (X,_|X,). If #: is not
restricted to its principal value, X is of course a highly multiple-valued
function of X;. Cases in which this multiple-valuedness is of significance
in actual mechanical cells will appear later.

For numerical calculation of X, the following proceduré is probably
the best:

1. Compute the diagonal D of the quadrilateral using the cosine law:

D? = A? 4+ B} 4 24.B; cos X1, 2
2. Compute 7: and 5 by further applications of this law:
D?* 4+ A? — B? . . .
€os 71 = —ﬁl‘D——‘; . with gin g, sin X; > 0, (3)
D2 4+ A% — B} .
CoS 7z = —-;—A:ﬁ—g’ with 0 < 72 < 180°. 4)

3. Find X2+, X2._ by Eq (1).

6-2. Classification of Three-bar Linkages.—Three-bar linkages are
conveniently classified according to the inherent limitations on the range
of the input parameter X;. To find these limits, within which the func-
tion X2(X 1) is defined, we observe first that the diagonal D is a side of
the triangle S1S:T; and as such is limited:

|Ay — Bi| £ D =< A, + B, (5)
Similarly, since D is a side of the triangle 718,72+,
|[As — Bs) < D < A; + B, ) (6)

These are the only limitations on D, and they imply the limitations on X
with which we are concerned.

Since Egs. (5) and (6) apply simultaneously, they must be consistent;
unless there is overlapping of the intervals set by them for D, it will not
be possible to construct a cell with the given dimensions. When the
two intervals overlap, D can take on any value within the range common
to them. As is illustrated in Fig. 5-2, the intervals can overlap in four
different ways, which form the first basis for our classification of these
linkages:
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Class a: |Az - Bz‘ < lAl - Bl\ < A1+ By < A3 + By, (N
Class b: |41 — By < |ds — Bs| < A1+ Bi < 43 + By, (8
Class c: Az — B| < |41 — By < Az + Ba < 41+ By, (9)
Class d: |A1 - B1l < lAz —_ B2l < Ag + B2 < A1 + Bl. (10)

In each case, D can take on all values between the two intermediate

quantities of the corresponding line. 14,- Byl A,+B,
The linkages of Class a have an  (jass o —

unlimited input, since Eq. (5) implies 14,-B,) A,+B;

no limitation on Xi, and Eq. (6) is

automatically satisfied. Linkages of \4,-By. A+B,

the other three classes have a limited

input range. With linkages of Class b s J
2=Bj Az*B;

Class b, passage through the value

X1 = 180° isimpossible, since D can-

not assume the corresponding value 4~ Byl ArtBy

|41 — Bi|. With linkages of Class¢, Classe | .

passage through X; = 0°is excluded, lA,~B) A,+B,

since D cannot assume the cor-

responding value Ay + B,. Finally, 14,- Byl Ar*By

with linkages of Class d, passages (Classd '

through X; = 0 and X; = 180° are 1Ap-Byl As+B,

both impossible; D cannot attain Fie. 52.—Classification of three-bar
values corresponding to either of linkages.
these points. The range of the output variables can be discussed

simjlarly.
From what has been said it is obvious that the four linkages with

1. Ay=p,Bi=¢q, Ae=1,B: =
2. A1=q,B1=p,Az=T,Bz=
3 Ai=p,Bi=¢q Ar=38 By =
4. A1=q,B1=p,A2=S,Bz=

!
N N8 oo o»w

beloug to the same class. Now the relative magnitudes of A, A, By,
B, form the basis of a further subeclassification of three-bar linkages, the
subclasses being given the numerical designation above if one takes
always p > q,r > s. That is, Class a linkages are divided into four
subclasses:

al: A1 > Bl, Ag > Bz, (11)
025 A1 < B1, Az > Bz, (12)
a3: A, > By, Ag < By, (13)
ad: A1 < Bl, Ag < Bz, (14)

and the other classes are similarly divided into four subclasses.
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Finally, in each subclass X3 is a function with two branches, X, and
X,_, which we place in separate sub-subclasses of the subclass. Three-
bar linkages are thus divided into 4 X 4 X 2 = 32 sub-subclasses in all.
A sub-subclass will be indicated by a symbol such as ¢3+, which applies
to the positive branch of a linkage for which

lAz—le <|A1—Bll <A2+Bz <A1+Bl,
Ay > By, Ag < Ba.

The general forms of the functions generated by all these types of
three-bar linkage are illustrated in Fig. 5-3. In each case the X, has
been plotted as a function of Xy, for a three-bar linkage with dimensions
illustrated in the adjoining sketch. A mechanical configuration and the
generated curve are both shown for the positive branch by continuous
lines, for the negative branch by dotted lines. The value of X, shown is
not necessarily the principal value. In some cases the positive and
negative branches join continuously, but always at a point of infinite
slope near which the linkage is not operable. The reader should study
this figure carefully, since one should not attempt to mechanize by this
means functions that obviously are not included in the class of functions
of the three-bar linkage.

6-3. Singular Cases of Three-bar Linkages.—Certain special three-
bar linkages that belong to more than one of the classes defined above,

Fi1G. 5-4.—Three-bar linkage with 41 4+ B: = A; + Ba.

as limiting cases, have special properties that entitle them to separate
mention.

Case A: A1 —!" Bl = Az + Bz. (15)

«

A linkage of this type (Fig. 5-4) has a singular point for X; = 0. So
long as the input variable is restricted to a range not including the point
X, = 0, the configuration of the mechanism and the value of the output
variable are uniquely determined. When X; = 0 the value of X is
still uniquely determined, but the mechanism has at this point aninde-
terminate motion, there being two possible finite values for dX./dX,.
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Thus, when the input parameter is allowed to pass through the value
X, = 0, X, may or may not pass from the positive to the negative branch
of the function, or conversely; the value of X is no longer uniquely
determined by the value of X, but may have either of two values, unless
appropriate stops are introduced.

Case B: [Ady — By = |42 — Bl (16)

In this case (Fig. 5-5) a similar singularity exists for X, = 180°,

I1a. 5-5.—Three-bar linkage with A — B1 = A; — Ba.

Case C: Ay + By = A + B,

|4 B =14 Bl } simultaneously. (17)
11— Oy = 2 — D2

In this case there are, of course, singular points for both X; = 0 and
X, = 180°% as well as some other important features that should be
mentioned.

The conditions in Eq. (17) can be satisfied in two ways:

01: A1 — B1 = —(Az - Bz); 31 = Az; Al = Bz. (18)
Cz: A1 el B]_ = Az - Bz; A.l = Az; B]_ = Bz. (19)

The Case C,, the parallelogram linkage (Fig. 5-6), is very well known.
Its positive branch (for 0 < X; < 180°) is used to transmit rotation
from one shaft to another at the ratio 1 to 1, within limits set far enough
from the points of singularity, at which backlash may become important.
(A good range in practice is 30° < X; < 150°, but larger ranges can be
attained by increased care in manufacture.) The corresponding nega-
tive branch of the linkage function, shown dotted in Fig. 56, is rarely
used; its curvature decreases as the length of the link B; is increased.
1t will be noted that the various positive and negative branches, differing
by changes in X; and X, which are multiples of 2rx, form a connected
network through the whole of the X,X.-plane. If no stops are intro-
duced the generated X, may or may not pass from a positive branch to a
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negative branch, or vice versa, every time X, passes through a value
that is a multiple of 7. The value of X is thus not uniquely determined
by the value of X; it is not even restricted to one of two values, as in
Cases 4 and B; it may take on an infinite number of values, which fall, of
course, into two sequences with spacing 2, corresponding to the positive
and negative branches.

X,
2n~;K
” ~~
// \\
e A e
\ 7 N\
a4 \
4 = + X
-n S0, 07T e
’ \ /
7 \ d
7 N /s
s N4
’, 3 ¢
/\

F1ag. 5:6.—Three-bar linkage with B:1 = A2, Ay = Ba.

Linkages of Class C; (Fig. 57) are of special interest in that X,
remains zero on part of the positive and negative branches, whatever the
value of X;; how this can happen will be evident from the geometry of
the sketch. [The classification of branches as positive and negative is
here quite formal; physically it would be more appropriate to think of the
branches as (1) the straight line X; = 0, and (2) the oscillatory curve
with continuous derivative.] If the generated X is following the positive

X,

i

2
N .
-ay e 0 ”\\\ !

\\‘__,’ J .
m
2

F1a. 5:7.—Three-bar linkage with A1 = A,, B) = Bo.

branch between X; = 0 and X, = =, and X, passes through the former
point, then X, may continue to change at a uniform rate by passing over
to the negative branch, or it may follow the positive branch and remain
zero thereafter; this latter behavior can be assured by the introduction
of stops. This type of linkage is therefore of value in mechanizing func-
tions with a discontinuity in the derivative.  Unfortunately, these cells
cannot supply any appreciable effort near the point of singularity;
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torques must be applied to both cranks in the directions of the desired
motions.

In practical applications the author uses a still more special linkage,
with Ay = By, = A; = By (Fig. 5-8). This is also a special case of the
other singular classes, A, B, and Cy; it is interesting to observe how the
diverse curves of Figs. 54 to 5-7 can pass over into the curves of Fig. 5-8
as a common limiting case. With this linkage three types of configura-

X,
" /
4
’ T4
/ (a)
b (%)
® X;=@2n+1)m
X,/ - © G I X,
f
| Ve t
(b)= (@)’ (b)
: /I (a)//
(4 4
/ 1,7
YO

Fig. 5:8.—Three-bar linkage with A, = B, = As = Ba.

tion are possible, represented by three sets of lines on the graph in Fig.
58:

a. The parallelogram linkage configuration, represented by the curves
X g = X 1 + 2rn.

b. Configurations in which the input terminal is locked in a definite
position, X, = (2n 4+ 1)z, while the output terminal can assume
any position.

¢. Configurations in which the output terminal is locked in a definite
position, X, = 2rn, while the input terminal can assume any
position.

Of particular interest are the transitions between configurations of types
(b) and (¢), which can be assured by the use of stops. We shall now see
how these can be used in generating a function with a discontinuous
derivative.

Figure 5.9 shows a mechanical cell for which

X = aX; when X; > 0, (20)
X =-bX; when X; < 0,
with

a>1>hb.
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It consists of the linkage of Fig. 5-8, with added input and output termi-
nals which are push-rods pivoted to the central link B,. The input
and output parameters, X; and X, are displacements of these rods
perpendicular to the line of the pivots S, and S, of the three-bar linkage.

When X; = X, = 0, the linkage

is In its critical position, with

X, =180°% X; =0° the two

cranks then just touch stops C,,
X,— C,, which limit their motions to
) X, = 180° X, 2 0. If X,isnow
increased by a push exerted on the
X; terminal, the crank A4, will be
held firmly by the stop C., while
the crank B; and the link B, will
rotate together about their col-
linear pivotal axes S, and T into,
for example, the configuration
illustratedin Fig. 5-9. The param-
eter X, will then increase more rapidly than X;, in the ratio of the
distances of the corresponding push-rod pivots from the axis of rotation:

a_Bz—d1_
—Bz—d2

If the direction of motion is reversed by a push exerted on the X terminal,
A, will be held against the stop C; both by the linkage constraint and by
the torque due to any resisting force at the X; terminal, until the crank
B touches the stop Ci1. At this point the situation changes abruptly:
the crank B, can no longer rotate; the crank A, is no longer locked in
position by the linkage constraint; a further push on the X, terminal
will cause the crank A, and the link B: to rotate together about their
now collinear pivotal axes Sy and T:. Then X; and X; both become
negative, the ratio of their values being

-z
The change in dX./dX, as the linkage is pushed through its critical posi-
tion, in either direction, is quite abrupt; it is associated with a similarly
sudden increase in the driving force necessary to overcome a resisting
force at the other terminal, when the mechanical advantage is reduced
by the change in fulerum.

The desired discontinuity in the derivative is not so perfectly realized
if the link is pulled rather than pushed through its critical position. When
the configuration is that illustrated in Fig. 5-9, a pull exerted on the

F1a. 5-9.—Mechanical cell generating a func-
tion with discontinuous derivative.

21

b (22)
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X-terminal and a resisting pull on the X,-terminal will produce a torque
tending to move the arm A; away from its stop. This arm, however,
is locked in position by the linkage constraint, and the locking will be
effective until the critical position is approached, and mechanical play
in the linkage becomes important. This will allow crank A, to begin to
move away from stop C: before crank B; quite reaches stop Ci; the
result is some rounding off of the otherwise abrupt transition from one
slope to another, but there is no tendency for the mechanism to jam.

5-4. The Problem of Designing Three-bar Linkages.—We have now
to consider the problem of determining the elements of a three-bar linkage
that will mechanize a given function

X2 = ($2|$1) * Ty, (23)

If this function is to fall within the class of linkage functions, it must be
required to generate it only for a finite range Az; of the input variable
x4, or, if the range of z, is infinite, z; must be a periodic function of z,
with period Az,. In either case, restricting attention to the range Az,
of the input variable, one can write the relation in homogeneous form:

ke = (hg|hy) - 1. (24)

To mechanize this relation we have to design a three-bar linkage described
by
X, = (Xa]X)) - Xy, Xim £ X, £ X, (25)

such that when homogeneous parameters Hi, H, are introduced, the
corresponding relation

H2 = (Hlel) ) Hl (26)

becomes identical with Eq. (24) on direct or complementary identifica-
tion of the pair of variables (i, h:) with the pair (H, Hg). If the func-
tion to be generated is periodie, it is necessary, in addition, that

AXl = X1M - le = 360°;

the infinite range of x; then corresponds to the infinite range of X,, when
passage to the next period of the generated function is permitted.

A three-bar linkage may be described by the constants 4, By, 4,
Bs, X1my, X1y, AX, Xom, Xou, AXs; of these only five are independent.
The form of the function (X,|X:) is determined by three independent
ratios of the sides of the quadrilateral; the angles X; and X, do not
depend on the over-all scale of the mechanism. We shall choose the
three side-ratios, B,/A,, Bs/As, A1/A, as the independent constants
that determine the form of (X.|X,). Now, the field of functions (X,|X /)
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of the three-bar linkage is three-dimensional, but each function (X4|X,)
can generate a whole field of functions (H4|H,) that depend on the choice
of additional constants: two constants (for example, X1, and Xx) in
the case of a nonperiodic function, and one (for example, X;..) in the
case of periodic functions. The field of all functions (H.|H1) of a three-
bar linkage is therefore five-dimensional where nonperiodic functions
are concerned, and four-dimensional with respect to periodic functions.
We shall henceforth concentrate our attention on the more difficult case
of nonperiodic functions.

In practical terms, the problem is that of approximating a given func-
tion (ho|h:) as well as possible by a three-bar-linkage function (Hi|H )
characterized by five independent constants. It is very difficult to
find the best fit by varying all five constants independently; one must
begin by assigning fixed values to at least two of them, even when choice
of these values must be made rather arbitrarily. Fortunately, in prac-
tice one has usually some indication of an appropriate value for one or
more of these constants.

The way in which a linkage is used in the computer as a rule suggests
an appropriate value for AX; and AX,. In particular, in generating a
monotonic function one can hardly have AX, > 180°; on the other hand,
AX; must not be chosen too small lest the linkage degenerate into what
is essentially a harmonic transformer. It is thus evident that it will be
useful to have a method for finding the best fit to the given function
consistent with specified values of AX; and AX,; the side-ratios (or their
equivalent) will then be the adjustable parameters. The nomographic
method, to be described immediately, is suited for this type of curve
fitting. It should be used for all monotonic functions and is useful in
many other cases.

When the given function is not monotonie, it is sometimes difficult to
choose AX ;. The geometric method, to be described later in this chapter,
is then useful. In applying this method, AX,; and B;/A, are fixed and
the fit to the given function is obtained by adjustment of AX,, B;/A4,,
and A1 / A 2.

THE NOMOGRAPHIC METHOD

The ‘“‘nomographic method” nere discussed is a method of curve
fitting by three-bar linkages with given AX; and AX,. It takes its
name from the use made of an intersection nomogram, which appears as
an insert in the back of this book. This nomogram, Fig. B-1, is also
useful in many other types of calculations on three-bar linkages.

6-6. Analytic Basis of the Nomographic Method.—For analytic pur-
poses it is convenient to specify the side-ratios of the quadrilateral
through the three independent constants
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by = In (f I) 27
by =In (%), (28)
a=In (%:) (29)

Correspondingly, we may specify the configuration of the quadrilateral
in terms of the diagonal-to-side ratio, through one or the other of the
new variable parameters

D
p1 = In (Zl)i (30)
D
P2 =1In (A—) =p+ a, (31)
2
which will replace the input parameter X, in our discussion.

In terms of these new symbols the equations of Sec. 5-1 take on a less
familiar but very useful form. Since

D B, _, B,
E—e”, 4, 4, = i e, 32)
one can rewrite Eq. (2) as
e =1+ e? + 2¢% cos X, (33)
or
b, —b,
e = 2¢h (e ;e + cos X1>- (34)
Hence the relation between the variable parameters X; and p, is given by
cos X; = § e?~% — cosh by, (35)
or
p1 = % In (2 cos X; + 2 cosh b;) + ¥ by (36)
By similar manipulations Egs. (3) and (4) become, respectively,
cos 71 = cosh p1 — ge%eP, (37)
cos 7z = cosh py — e®e?:
= cosh (p1 + a) — e~ Pta), (38)

As before, sin 1; and sin X, must have this same sign, while
0 =< 92 = 180°
Then the output parameter is given by

Xop = n1 + g, (39)
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or by
Xoo = n1 — s (40)
Equations (36) to (40) describe all three-bar-linkage functions (X 5| X ).
The important feature of this formulation is the expression of 5: and 7,
in terms of the same function of two independent variables,

G(p, b) = cos™! (cosh p — Fe?—7); (41)
one has
m = G(py, by) (42)
and
n2 = G(ps, b2) = G(p1 + aq, by). (43)

This makes it possible to compute n, and 5, by the same intersection
nomogram, with other advantages that will become clear as the discussion
proceeds.

6-6. The Nomographic Chart.—In three-bar-linkage calculations one
repeatedly encounters the relations

n = G(p, b) = cos™' (cosh p — fe®—7) (44)

and
p=F(X,b) =41In(2cos X + 2 cosh b) + 3}, (45)
where p stands for p; or p2 = p1 + a, b for by or by, X for X, and » for
n1 Or 2. It may be required to solve these equations singly or simul-
taneously, with various choices of the unknown. For rapid calculations
of this type the use of an intersection or grid nomogram is very convenient.
The intersection nomogram representing a given functional relation
is not uniquely determined, but may be given an infinite variety of
forms. In the present case it is desirable to take lines of constant p as
vertical lines, lines of constant 5 as horizontal lines, and to plot on the
(p, n)-plane curved lines of constant b and constant X (Fig. 5-10). TItis
at once evident that choice of consistent values of any two of the variables
will determine a definite point on the chart—the intersection of the lines
corresponding to the given values of these variables; corresponding values
of the two other variables, as determined by Eqgs. (44) and (45), can then
be read off at the same point. Before illustrating this process, however,
we must consider in more detail the structure and properties of the chart.
As shown in Fig. 5-10, the horizontal scale is uniform in p with the
vertical lines spaced at intervals of 0.1 In 10; they are labeled in terms

of the variable
D
up = logm (Z)! (46)

for which the intervals are 0.1. The vertical scale is uniform in », with
lines of constant n shown in Fig. 510 at intervals of 30°, from — 180°
to +180°.
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On the grid thus established there have been plotted lines of constant b
at intervals of 0.1 In 10; they are labeled in terms of the variable

ub = 10g10 gr (47)

for which the intervals are 0.1. (The factor x = 1/ln 10 is introduced
in this way to facilitate computation with decimal logarithms.) The
curve b = 0 is open, with the horizontal asymptotes n = +90°. Curves

+1807 I +180°
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+120] | \/ - i’\”w
VARV P oS =N
+9¢' —] +100°
WIRBREA ===
RN g oW
L TS =

1 1
g 8§
paiEnN
{E-
YR
%:\_
x
=

o

~120—F>

\r< I
I
-180
~0.7 -06 -05 -04-03-02-01 0.0+0.1+0.2 +0.3 +04

wo
¥16. 5-10.-—Intersection nomogram solving Egs. (44) and (45).
of constant b < 0 are closed. Curves of constant b > 0 are open and
periodic in 5 with period Ay = 360°; they have a pronounced sinusoidal
character, being symmetric to reflection in the lines

7= --- —180°0° 180° . ..
and centrally symmetric about the points where they cross the lines
n= - —90° +90° . ...

For a more detailed discussion the reader is referred to Appendix B.
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Lines of constant X have been plotted at intervals of 10°. All are
open curves, and each has the same shape as a part of the curve b = 0.
Indeed, the curves X = X, and X = X, — 180°, which join smoothly
at p =9 =0if 0 < X, < 180° together form a curve congruent with
the curve b = 0. All have asymptotes parallel to the p-axis, but run
to infinity toward the right (p = + =), instead of toward the left
(p = — ) as does the curve b = 0. Again the reader is referred to
Appendix B for a more complete discussion.

Since the parameters p and 4 have no limits, the nomogram extends
in principle over the whole plane. It is periodic in 5 with period 360°;
the part shown in Fig. 5-10 could be supplemented by the addition of
similar figures above and below, extending indefinitely to positive and
negative 5. The chart could also be extended to larger and smaller
p, but the added portions would be of less practical importance since
very large or very small values of b are not much used.

In actual work one does not need the whole field covered by Fig. 5:10
but only its upper half, since the lower half is a mirror image. By sup-
pressing the lower half, longer scales can be used in a given available
space. This has been done in the preparation of Fig. B-1, which pre-
sents this nomogram on the largest scale possible in this book. This
figure is quite adequate for a study of the method; in actual design work
it is desirable to have it drawn on a scale twice as large and with a greater
nuraber of curves. Table B-1 of Appendix B presents the information
needed for redrawing the nomogram—the coordinates (up, 1) of the points
of intersection of the curves pb = 0, +0.01, +0.02, - - - , +£0.5, with
the curves X = 0, £5° +10°, - - -, +180°

6-7. Calculation of the Function Generated by a Given Three-bar
Linkage.—The intersection nomogram permits solution of Egs. (36) to
(40), which completely describe any three-bar linkage; it therefore suffices
for the graphical construction of any three-bar-linkage function (X2|X).
The procedure will be described in connection with its application to
the special linkage sketched in Fig. 5-11, for which ub; = —0.1, ub2 = 0.3,

B, A,

4o = 03. For this linkage L% = 0.795, D% = 1,005, . = 1.995; with

B. taken as unity, the links have lengths B; = 0.795, A, = 1.000,
Az = 0.501.

To determine the value of the output parameter X, corresponding to
a given value of X —in the example, 140°, as illustrated in Fig. 5-11—
we proceed as follows:

(1) Knowing X, and b;, one can determine p; and 7 by Eqgs. (36)
and (37). Instead, on the nomogram, Fig. 5-12, we follow the curve
X = X, (=140°) until it intersects with the curve ub = pbi (= —0.1) at
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the point P, At this point we can read off the corresponding values
of up, (= —0.191) and n, (= 52.5°).

(2) Knowing pp, and pa, one can compute u(p; + a)—in the example
0.109. Instead, on the nomogram we locate a point ua units to the right
of P (by the scale at the bottom of the figure) and through this con-
struct the vertical line up = u(p: + a).

(3) Knowing u(p: + a) and ub,, one can compute 92 by Eq. (38).
Instead, on the nomogram we follow the vertical line up = u(p: + @)
until it intersects the curve ub = ubs (= 0.3), as it does at the two points,

F1a. 5-11.—Three-bar linkage used in illustrative caleulations.
Q¥ and Q°, within the field of Fig. 5-12, and at an infinite sequence of
points outside this field. It is at the point QP that n lies between 0
and 7, and it is, therefore, at this point that we can read off the value
of g (= 121°).

(4) Computation of X, is now simple:

X2+ = + ne = 52.50 + 121° = 173.50,
and

Xoo = m — ne = 52.5° — 121° = —68.5°.
These values can be checked on Fig. 5-11.

It will be noted that in Fig. 5-12 the value of 7, is represented by a
vertical line from the line n = 0 to the point P, and the value of »; is
represented by a similar line to the point Q. Graphical methods for
adding these lengths can be used to construct the value of X2,. In the
same way, the vertical line from 7 = 0 to the point Q® represents the
(negative) quantity which must be added to 7: to get X,_; we call this
ne—, to distinguish it from the principal value, 72, and write

Xoy = n1 4 nay. (48)
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We shall often use this relation instead of Egs. (39) and (40). The
point QP will then be regarded as corresponding to the positive branch
of the solution for X3, and Q@ as corresponding to the negative branch.

By use of the nomogram we can get a graphic presentation of the
entire course of the function generated by a given linkage. To picture
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F1a. 5-12.—Calculation of the function generated by a given three-bar linkage.

[

the function (X:/X;) we may wish to compute X, for a ‘“spectrum of

X(],X(],Xl,. . .;K] .

(In Fig. 5:12, X{ = 140° — r-10°, r =0, 1, - - - 4) Corresponding
to this sequence of values, there is a sequence of points P(®, P, . . |
on the ourve ub = by, at which we can read off the spectra of values of
up1 and of 7.

(n).

wp?, wpt®, . . . upl;

(0) (¢V] (n)
My My « v Mo
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Vertical lines from 7 = 0 to these points represent the spectrum of
values of up, by their horizontal spacing, the spectrum of values of n; by
their lengths. On shifting each of these lines to the right by an amount
upa we next obtain lines representing, by their horizontal spacing, the
spectrum of the variable parameter up, = u(p: + a), which can assume
the values

(PP + a), u(p® + a), * -+ uw(@P + a).

Since this shift does not disturb the distribution of the lines, one can
speak of the spectrum of values of up, as congruent to the spectrum of
values of up,. The spectral lines for up,, by their intersections with the
curve ub = ubs, define two sequences of points:

@, QP - Q,
Qv Q2 ... QY

from which one may read off the spectral values of 7s:

and

0 (D (n)
"1(21, Moty - - - N2%.

By terminating the spectral lines of up, at the points @', we can make
them represent the spectral values of §) by their upward and downward
extensions, just as the spectral lines for up, represent the values of ..
There results a very clear picture of the way in which 5, and »., change
together with X;. Finally, the spectrum of values of the output variable,
X9, X9, .. X2,

can be obtained by adding corresponding spectral values of #, and 7., .

b-8. Complete Representation of Three-bar-linkage Functions by
the Nomogram.—It will soon become evident to the reader who attempts
to use the nomogram that it is not possible to carry through for all X,,
and for given ubi, ubs, and pua, the calculation outlined in Sec. 5:7. This
limitation corresponds to restrictions on X, inherent in the geometry of
the linkage considered, and is not a shortcoming of the nomogram; that
the nomogram gives a complete representation of the whole class of
three-bar-linkage functions will be evident from the following discussion.

In the calculations discussed in Sec. 5-7 it is convenient, but not neces-
sary, to select values of X, corresponding to lines appearing on the nomo-
gram. We shall now consider a continuous spectrum X¢, which includes
all values in the range — © < X; < 4+ «. We shall call such a con-
tinuous and infinite spectrum of X{? ‘“the complete spectrum X{.”
Corresponding to a continuous spectrum X{” there will be a continuous
spectrum X§. The values of X{°, however, as computed by Egs. (36)
to (40), will not be real for the complete spectrum X{* but only for
certain “bands” of that spectrum. Real configurations of the linkage
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correspond, of course, only to real values of X{; thus, by observing the
limiting values of X{ and X{ in the “bands’’ in which the solution is
real, one might determine the limiting configurations of the linkage.

We now use the nomogram in studying the conditions for the existence
of a real solution X{ corresponding to a given value of X{>. We note
first that, as X{” goes through all values, up, can go only through a
limited range of values determined by the fixed value of ub;. This cor-
responds to the limitation on the magnitude of the diagonal D, which has
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Fia. 5-13.—Range of operation of a three-bar linkage.
been expressed analytically in Eq. (5) and in our present notation can
be rewritten as

logio [L — 104] < upy < logio (1 + 1044). (49)
The range of pp; is finite if xb; = 0, and extends to — © when ub; = 0;

we shall speak of the values in the range of up; as making up “the com-
plete spectrum up{®.”’ In Fig. 5-13, which applies to a linkage with

pbl = ‘—02, ybz = 03, ua = 05,

it is clear that up; can not be less than —0.432 (for X; = 180°), nor
greater than 0.215 (for X; = 0°). We have, then, for the complete
spectrum, —0.432 < up{” < 0.215. By shifting the complete spectrum
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pp{” to the right by a distance pa, we obtain the complete spectrum
w(p?? 4 a). In our example

+0.068 = u(p?” + a) < 0.715.

In the same way it will be observed on the nomogram that there is g
limited range of values of ups consistent with the fixed value of ub,.
This corresponds to the restriction on D expressed analytically by Eq. (6),
which in our present notation is

IOgm ll —_ 10‘“bzl é mP2 é IOglo (1 + 10“1’2). (50)

The values in this range make up the complete spectrum up{”. In the
case illustrated in Fig. 513, —0.002 < up™ £ 0.476.

In the nomographic computation of X one has to identify up, and
u(p1 + a). This will be possible only for values of ups which lie in the
complete spectrum ppy® and also in the complete spectrum p(p? + a);
such values make up the “limited spectrum up{’.’ By shifting the
limited spectrum pp$’ to the left by an amount ua, we obtain finally the
limited spectrum wpp{®. The nomographic computation ecan be carried
through for all values of pp; that lie within this limited spectrum; for
the corresponding values of X, the limited spectrum X{?, one can com-
pute real values of X,. The range within which this ealculation is pos-
sible corresponds exactly to the range within which both Egs. (5) and
(6) are satisfied, as illustrated in Fig. 5-2. Thus all physically possible
configurations of the linkage, all real three-bar-linkage functions (X,|X,),
are covered by the nomogram.

The reader will find it instructive to apply the nomogram to the dis-
cussion of the parallelogram linkage.

5-9. Restatement of the Design Problem for the Nomographic
Method.—The nomogram is conveniently used in three-bar-linkage
design only when it is possible to preassign values for two of the design
constants, AX; and AX,;. There remain three design constants—b,, bs,
and a, or their equivalents—to be adjusted in the process of fitting the
generated to the given function.

When the angular ranges of the input and output variables are thus
specified, it becomes possible to express the given function in terms of
angular variables ¢, and ¢, instead of the homogeneous variables &,
and he:

P 1= A-thl,

In comparing the given function with the generated function, one will
correspondingly express the latter in terms of the angular parameters
X 1 and X e




128 THE THREE-BAR LINKAGE [Sec. 5-10

Xl - le = AX1H1
’ 52
Xz —_ XZm = AXsz. ( )

The design problem can then be stated as follows. It is desired to find a
three-bar linkage generating a function

X: = (Xz’Xl) ».¢ (25)
which can be identified with the given function
2 = (@2]e1) " @1 . (63)

on direct or complementary identification of H, with k1, H, with kg (cf.
Sec. 5-4). Direct identification in the two cases implies

o1 = X1 — Xim,
Q2 = X: — sz; } (54)

complementary identification implies

AX1 - @1 = Xl - le
’ 55
AX2—<P2=X2—‘X2m-} ( )

The design problem is essentially the same if the identification is direct in
both cases or complementary in both cases; if the identification is direct
in one case and complementary in the other it does not matter in which
case it is direct. It will be convenient to assume that it is always direct
in the case of the output variable. The relations to be satisfied by the
angular parameters are then

to1 = X1 — X1 — 3AX, + $AX,
’ 56
o2 = X2 — Xom, (56)

with the upper sign corresponding to direct identification.

It is important to note that the procedure to be described does not
necessarily lead to a unique solution of the problem. There usually exist
two quite different approximate solutions, with a positive and a negative
value for bi, respectively. During the design process the constants
of both of these solutions should be determined sufficiently accurately to
permit a rational choice between them. This point will be fully illus-
trated in later sections.

5-10. Survey of the Nomographic Method.—Fitting the generated to
the given function by simultaneous and independent variations of the
three remaining design constants is hardly practicable. We therefore
(1) make a definite choice of by, and then find the best fit obtainable by
independent variation of the other two design constants; (2) find a better
value of b, as described in Sec. 5-13; (3) find the best fit obtainable by
variation of the other design constants, using this improved value of b;;
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(4) find a petter value of b; and so on, approaching the optimum choice
of all three constants by successive approximations.

It would be quite natural to choose bs and a as the design constants
to be adjusted in the first step of this procedure. However, to deal with
these constants directly involves, in effect, the fitting of the given curve
to a member of a two-parameter family of three-bar-linkage curves. It
is preferable to choose X1, and X, as the additional constants on which
attention is concentrated, since it is then possible to work instead with
two one-parameter families of curves, one easily constructed from the
given function, the other appearing on the intersection nomogram. To
make it clear how this can be done we shall consider three increasingly
difficult problems. The discussion will be illustrated by Fig. 5-14.
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Fi1a. 5-14—Curve fitting in Problems 1 and 2, Sec. 5-10.
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Problem 1: Determine whether or not a given function (¢2|¢1) is generated
by a linkage of specified constants AX,, AXs, b1, X1im, Xom—Since AX,,
X1im, and X,. are known, it is possible to transform the given functional
relation (¢:|¢1) into a functional relation of the angles X, and X,
(X2|X 1), by use of Egs. (56), whether the identification is direct or com-
plementary. The problem is then: Is this function (X.|X;) really
generated by a linkage characterized by the given constants?

Let X{” be any value of X in the specified range. On the nomogram
we locate at the intersection of the lines X = X{” and pb = ub, the point
P at this point we can read off the values of pp{” and »{” generated by
the linkage. We do not yet know the generated values of 72, and X», but
we do know the corresponding given value of X», X, and can compute
the ‘“given” value of 72, using Eq. (48):

= X — 2. (57)
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On the vertical line through the point P we erect a spectrum line of
height #§), ending at point R®. By moving this spectrum line to the
right by an amount pa (still unknown) it can be brought into the position
of the spectrum line pp{®. If the given value n§) is the one actually
generated, this spectral line will then extend exactly to the curve ub = pb,,
(also unknown at the moment); the amount by which it falls short of that
curve is the amount by which the generated value of X{” exceeds the
given X§). The complete spectrum of such lines, limited by the curve
R® . . R® .. . R™, can be outlined quickly.

Let the curve R® ., .. R® ... R™ be drawn on a transparent
overlay. Suppose now that, by moving the overlay to the right by a
distance pa, this curve can be made to coincide with some curve pb = ubs.
It will then follow that the given function is indeed generated by a linkage
with the specified constants, AX,, AXs, b1, Xim, X2m, and, furthermore,
that this linkage is also characterized by the constants b, and a thus
determined. For, in view of the methods of computation outlined in
Sec. 57, it is clear that a linkage with the above values of by, b2, and @ will
generate a spectrum of values of 7o, which is just the spectrum of the
“given” values, 1§), and hence a spectrum of values of X, which is also
the given spectrum X§¢), for X, £ X £ Xy» + AX:. The spectrum of
X, is determined by the given constants X, and AX,;; the generated
spectrum of X, which reproduces the given spectrum of X, must
correspond to the constants X;», and AX,. Since the linkage that
generates the given function is characterized by the five specified
constants and by the derived b; and a, the truth of the statement
follows.

As an example, shown in Fig. 514, we take a case in which the
specified constants are AX; = 60°, AX, = 105°% pub, = —0.2, X, = 90°,
X2m = 45°. The given function (g:|¢:) has been assumed to increase
menotonically from g2 = 0° when ¢1 = 0° to @2 = 105° when ¢, = 60°;
ks Eq. (56) (with the upper sign) X, then increases monotonically from
X, = 45° when X, = 90° to X, = 150° when X, = 150°. Taking
X® = 45°, we locate P and read »{® = 33°; hence %) is 45° — 33° = 12°,
corresponding to point R©®. With X{™ = 150°, we locate P and read
7™ = 36°; hence 3% = 150° — 36° = 114°, corresponding to point
R™, We shall assume that similar computations for intermediate X,
serve to determine the curve R® . . . R® . . . R™ agshown. If now
this curve is moved to the right by an amount ua =< 0.4, the end points
can be brought to lie at points 4 and C on the same contour of constant
ub: pbe = 0.3. The intermediate portions of the curve do not then lie on
that contour, and it is evident that no other contour can give a fit. It
follows that the given function can not be generated by a linkage with the
specified constants. The difference between the given and the generated
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functions is immediately evident. A linkage with pa = 0.4, ub; = 0.3
does give a fit at the very ends of the range of X, (points A and C), and
thus at the ends of the range of X,. This linkage has therefore the
specified values of AX,, AX 3, X1, and Xsnm, as well as that of by; it is the
specified linkage. It generates values of 7.+ given by the curve AA’B’C,
instead of the “given’’ values of the curve ABC; the vertical separation
between these curves is then the difference between the given and the
generated values of X,.

Problem 2: Determine whether or not a given function (ps|¢1) can be
generated by a linkage of specified constants AX1, AXs, by, X1m.—It is now
possible to consider all values of Xam in seeking a fit of the generated to
the given curve, instead of only one value. Let the curve B® . . . R™
be constructed as before, for an arbitrarily chosen value of Xs.—for
example, X3,. If a fit can not be found for this among the curves of
constant ub on the nomogram, one will desire to make a similar trial for
another value of X,. —for example,

= Xim + A (58)

By Eq. (56), this increase in X, will produce a uniform increase, by
the same amount, in the ‘“‘given”’ values X3, and ns,; the new curve
R® | . R™ will be the old one raised by an amount A, and the fit will
be sought as before. Of course, instead of redrawing the curve, one can
simply shift upward by A the overlay on which the first curve was drawn.
Thus by allowing all vertical shifts of the overlay in seeking a fit one
treats X.., as a disposable parameter.

The stated problem can then be solved as follows: On a transparent
overlay draw a curve R® .,  BR® ., | BR™ assuming Xom = X;,.
If, by translating the overlay to the right by an amount pa and upward
by an amount A (as read on the scale of 7), this curve can be made to
coincide with some portion of the curve ub = ubs, then the given function
(¢z|p1) can be generated by a linkage with the specified constants AX;,
AX,, by, and Xy Furthermore, that linkage will also be characterized
by the constants by, @, and Xem = X5, + A, determined in this fitting
process.

In the example of Fig. 5-14 a fit can be obtained by moving the over-
lay, prepared as previously described, upward by an amount A '= 57°
and to the right by pa = 0.255; curve R® , , . R™ then lies on the
curve pb = ub; = 0.3, extending from A’ to C’. Thus the given curve is
actually generated by a linkage with the constants

AX, = 60°, AX,=105°, pby = —0.2, Xy = 90°

and, as now determined, ub; = 0.3, ua = 0.255, X3, = 45° 4 57° = 102°.
If the fit were not exact the difference between the generated and the
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given functions could be read as ‘the vertical separation of the curve
RO . . R™ and the contour ub = ub,.

Problem 3: Determine whether or not a given function (psz|e1) can be
generated by a linkage of specified constants AXy, AX,, b1.—Both X, and
Xam are now to be treated as disposable constants; the problem is then
essentially the same as that encountered in Step (1) of the design pro-
cedure described at the beginning of this section.

We have already seen how a fit can be sought for a given value of
Xin—for example, X{,—by a process that begins with the construction
of a corresponding curve—for example, Ry . . . R{®. To make the
same test for another value of X ..—for example X/, —one would similarly
construct another curve, R\ ... R™. Unfortunately, this is not
of the same form as the first curve; the actual construction of this curve
is not to be avoided, though it can be made relatively easy by methods
to be described.

The problem is then to be solved as follows. On a transparent over-
lay, construct a family of curves B . . . R™ for sufficiently closely
spaced values of X1, and for X,. = 0; label each curve with the corre-
sponding value of X1.. Now suppose that, by translating the overlay
to the right by an amount pa and upward by an amount X,,, (as read
on the scale of 1), the curve of this family labeled X;» can be brought into
coincidence with a part of the curve ub = pbs on the nomogram. Then
the given function can be generated by a linkage with the given con-
stants AX,, AX,, and by; this linkage would be characterized also by the
constants Xim, Xom, pa, pbe thus determined.

The essential features of the nomographic method should now be
evident to the reader. To find the three-bar linkage with given AX),,
AXs, b1, which most accurately generates a given function (p:l¢1), one
constructs on an overlay a family of curves corresponding to X»., = 0 and
to various values of X1.. Moving the overlay over the nomogram, one
seeks the best possible fit of a curve of this family to a curve of the ub.
family on the nomogram. The displacement of the overlay necessary
to produce this fit determines X, and pa for the linkage; the choice of
curves for this fit determines X;,. and pbz. The error in the resultant
mechanization is directly evident in the failure to obtain an exact fit
between the overlay and nomogram curves, and is measured by their
vertical separation. The steps involved in this process will be discussed
in detail in Secs. 5-11 and 5-12. After the method of improving the
choice of b, has been described in Sec. 5-13, the whole procedure will be
fully illustrated in Sec. 5-14.

5-11. Adjustment of b, and q, for Fixed AX,, AX,, b;.—We shall now
describe in full detail a practical procedure for the construction of the
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overlay mentioned in Sec. 5-10 and its use in determining the best values
of b and a.

Construction of the Overlay.

(1) Choose a spectrum of values of X3,

X =58, (59)

which fills the entire range from 0 to 360° at intervals & small compared to

AX,. One should choose 8 as the difference in X between consecutive
curves on the nomogram, or a multiple of this, so that there will be on the

chart a curve corresponding to each value X{. Usually § = 10° is
sufficiently small; § = 5° is possible with the chart plotted from Table
B-1.
(2) As the spectrum of values of ¢, take
o = 78, (60)
withr =0, 1, - - » n. Since these values should fill the range AX,, one

must have né = AX,.

(3) Compute the corresponding spectrum of ¢s:

o = (paler) - oi”. (61)
Using the same scale as the n-scale of the nomogram, construet this
spectrum as a series of tiny holes along a straight line on a strip of paper
(see Fig. 5-15). On this strip mark the index r for each of the lines of the
spectrum; indicate by an arrow the direction of increasing ¢s.

{4) Fasten over the nomogram the material on which the overlay is
to be constructed—for instance, a piece of tracing paper. Copy onto
the overlay all the points P® at which the contour ub = kb, is inter-
sected by the lines X = X, (Figure 5:15 shows the complete contour.)
Mark the points P on the overlay with the subscript s. Also copy
onto the overlay the lines n = 0, p = 0. This position of the overlay
will be called its starting position.

(5) Draw on the overlay the vertical lines up = up® through all
points P, These are the spectral lines for the variable up. The over-
lay can now be separated from the nomogram.

(6) Place the strip of paper carrying the spectrum ¢§” on the overlay,
along each line of the spectrum pp®, making the arrow point downward
and the first point ¢ of this spectrum coincide with the point P For
each such position of the strip, mark on the line up = pp of the overlay
the positions of the points ¢§” on the strip, labeling each with the corre-
sponding value of . These points we shall indicate as

PEpE .. P® ., PY.
(7) Starting at each point P® on the overlay, pass a curve succes-
sively through the points P, P@tv Pe+d | Petn | Pe+n,
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This family of curves we shall call the plus family. It is unnecessary to
use a French curve in this construction; it is sufficient to connect the
points by hand with straight lines, in order to make clear the way in

a3 N8 #o=0

R LTSI
I W@ N A W R *gi

F1a. 5:15.—8cale and overlay for first application of the nomographic method.

which they are associated. The plus family of curves appears as con-
tinuous lines in Fig. 5-15.

(8) Again, starting with each point P® on the overlay, pass a curve
successively through the points P®, P¢=Y p¢-> | Pe-n | Pe™,
This family of curves (dashed lines in Fig. 5-15) we shall call the minus
family.

This completes the construction of the overlay. As will appear from
our later example, construction of the complete overlay is not always
necessary.

We must now examine the significance of the curves thus drawn.

(1) The successive points P®, P+ | P@+m pepresent, by their
distances from the lines p = 0 and 5 = 0, the values of up and 7, for a
sequence of values of X:: X, X{*V, . . . By Eq. (54) these points also

correspond to the sequence of values of ¢;: 0, ¢f® . . . ¢, for the case
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in which X» = X! and the identification of h; and H,is direct. In
particular, P®*+ represents the values of up” and {” when X, = X{.

(2) The separation of the points on the strip corresponding to ¢{” and
¢ represents, on the same scale, the value of ¢f’ — ¢ = ¢f”. By
Eq. (54) this is also the value of X4, if X, = 0, and the identification of
h: and H, is direct.

(3) The point P#+” thus corresponds to up = pp’ and has as its 9
coordinate {by Eq. (57)]

(rn _ N — N
7 X9 = —ni,

for the case in which X, = X{, Xa, = 0, and the identification of h,
and H, is direct.

(4) We thus see that the curve of the plus family passed through the
points P®, Pe+d . Peto | P§t™ on the overlay corresponds to
the sequences of values

Xy X, X+, L X¢ L XGEm,
up: pp®, wp®, oo owp®, L wp™,
=, =i, o . D, - o . —aEl,

for the case described under (3).

(5) The sign of n can be reversed by rotating the figure through 180°
about the axis v = 0. Thus if the overlay as constructed is turned face
down by rotating it through 180° about the axis n = 0, then the curve of the
plus family labeled with an s gives the relation between 52, and up for the
case in which X1 = X{, X3 = 0, and the identification of h; and H, is
direct.

{(6) In the same way the reader will be able to show that, with the over-
lay turned face down as above, the curve of the minus family labeled with
an s gives the relation between 7s, and up for the case in which X1y = X,
X,.. = 0, and the identification of h; and H, is complementary.

Use of the Overlay.—With the overlay face down on the nomogram
and the line n = 0 horizontal, a fit is sought between any curve on the
overlay and a line ub = ub; of the nomogram. If a fit is found, the
constants of the linkage are determined as follows:

(1) AX,, AX,, ub; have been previously chosen.
(2) wbe is read from the curve of the nomogram with which the fit is

found.
(3) wa is the shift of the overlay to the right needed to establish the

fit. It may be read at the intersection of the line p = 0 of the overlay
with the up-scale on the nomogram.
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(4) X, is the shift of the overlay upward needed to establish the fit.
It may be read at the intersection of the line n = 0 of the overlay with the
n-scale of the nomogram.

(5) If the fit is established in the plus family of curves, one has
X1m = 83, s being read from the overlay curve with which the fit is made.
The angles ¢; and X; will increase together; this, of course, is always true
of ¢; and X,.

(6) If the fit is established in the minus family of curves, one has
Xy = 88, X1m = 88 — AX,. The angle ¢, will decrease as X increases.
The linkage and the associated scales are then completely determined.

The actually generated values of 5. will not be »§, since these were

computed on the assumption that X,, = 0; instead, they will be

71(2,3 + X 2my
which can be read directly on the nomogram scale. If the fit is estab-
lished on the upper half of the nomogram, 7, is greater than zero and the
generated function belongs to the positive branch; if the fit is established
on the lower half of the nomogram one has to do with a negative branch.

Usually the fit obtained between the nomogram and overlay curves
will be only approximate. The constants determined alone will then not
all be mutually consistent, unless the approximate fit is so made that the
error vanishes at the extreme values of X; and X,. This is easily done
when monotonic functions are being dealt with; in other cases one should
remember that when five of the design constants have been fixed the
others must be determined by appropriate calculations rather than read
as above,

6-12. Alternative Methods for Overlay Construction.—Modifications
of the above procedure are necessary when use is made of a nomogram
like Fig. B-1, which includes only the range from 5 = 0° to y = 180°.
The missing portions of this chart can be constructed as mirror images
of the part shown; or, more conveniently, the same effect can be obtained
by aporopriately turning the overlay.

For example: To construct the points P on the overlay, copy the
points P to PU® (agsuming § = 10°) from the nomogram, and draw the
reference lines. Then turn the overlay face down by rotating it about
the line n = 0, and copy the same points onto the overlay. The points
thus constructed are in fact P, PCD pe2 | P18 and should be
so labeled.

In the curve-fitting process described above, with the overlay face
down, the lower part of the nomogram will be missing, and direct fitting
to functions of the negative branch will not be possible. One can, how-
ever, turn the overlay again (so that it is now face up) and seek a fit on




SEc. 5-13] CHOICE OF BEST VALUE OF b, 137

the upper part of the nomogram. It must, of course, be remembered that
readings made on the 9-scale (for instance, readings of X»,.) must then be
taken with a minus sign. -

When ub; > 0, an overlay constructed as described above becomes
excessively large; another modification in the overlay construction then
becomes convenient. It will be noted that if the lower half of an overlay
is turned abqut the line 5 = 0, the point P§* will be brought into
coincidence with the point P, and the point P&® will lie as far above
Py ag P® lies below it. We shall speak of these points in their new posi-
tion as the ‘“transferred points’’; they extend through the ‘“transferred
region” of the overlay. These transferred points can be constructed
directly by the method described above with the one change that, in
locating the transferred points P§5=, P¢®, . . . P{®, one places the
point ¢ of the spectrum strip on the point P§ with the arrow directed
upward before copying off the succession of points ¢, @i, . . . @§.

In working with this transferred region one must remember that it is
equivalent to a normal region turned face down. When fitting curves in
a normal region, one turns the overlay face down and reads values
directly from the n-scale of the nomogram; when fitting curves in the
transferred region, one uses the overlay face up. The plus and minus
families of curves in the transferred region are most readily identified by
turning over the overlay.

5-13. Choice of Best Value of b, for Given AX,, AX,.—In the preced-
ing sections we have seen how to find the elements of a three-bar linkage
which gives an approximate mechanization of a given relation,

02 = (@2]er) - oy, (53)

when AX 1, AX,, and ub, are specified in advance. We have now to con-
sider the problem of finding an appropriate value for b; when only AX,
and AX; are specified.

A method of trial and error is obviously applicable. One ean carry
through the above process for an arbitrarily chosen pbi; if an acceptable
fit is not found another value can be chosen for wb, and the process
repeated, until a good fit is found or the useful range of ub; has been
covered. Fortunately it is necessary to try only a relatively small
number of values, such as pb; = —0.5, —0.2, 0.0, 0.2, 0.5, to determine
roughly the value of ub, or to establish that the proposed type of mecha-
nization is not appropriate.

Such a process of repeated trials can be abandoned as soon as even a
poor approximate fit is found between the overlay and nomogram curves.
Usually one finds at least a very rough fit with the first chosen value of
ub1, and can begin to apply a second method—one of successive approxi-
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mations. Let the linkage that gives the first rough fit be characterized
by the constants

AX,, AX’; ub§?, (21); I‘a(l)y (62)

of which the last two have been found by the process already described.
Now let us consider the problem of similarly mechanizing the inverted
function

o1 = (e1le2) - @3 (63)

with ¢, playing the role of the input parameter, ¢; the role of the ouput
parameter. The parameters ¢ and p; will then be interchanged through-
out the previous discussion, ¢, varying with the angle X,, ¢. with the
angle X;. The linkage that mechanizes this relation will be the same as
that which mechanizes the original relation, Eq. (54), except that input
and output are interchanged. If Fig. 5-1 represents the linkage for Eq.
(54), the linkage for Eq. (63) can be obtained from this by mirroring it in
a vertical line, along with the associated scales for ¢; and ¢s. This new
linkage differs from the old in that B, and A, are interchanged, as are
AX; and AX,; X1 is replaced by 180° — Xzu, X3, by 180° — X1, As
for the constants ub,, ubs, pa, we note that interchange of B, and A.
carries

pa = logo —i}: (64)
into
A B
logie B—: = — loge Z—i = —uby, (65)
and conversely, while
B
pbs = loguo A—: (66)

becomes

o () e[ ) () @) - 0

Distinguishing the constants of the inverted linkage by a tilde, we may
write

ui = —puby, (68a)
uby = —pa, (68b)
#by = uby — pa — pby, (68¢)
A%, = AX,, (68d)

and so on.
In attempting to mechanize Eq. (63) one might apply the nomographic
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method as before, choosing arbitrarily a value of ub; and finding corre-
sponding values of ub, and ud. However, — ua‘® is a known first approxi-
mation to the desired value of ub,, and an appropriate choice for the fixed
value of this quantity. We therefore take

ubP = —pa®, (69)

and by the nomographic method determine the corresponding constants
pb® ud@® in the mechanization of the inverted problem. This mecha-
nization of the relation between ¢; and ¢, must be at least as good as
that described by the constants in Eq. (62), since it is chosen as the best
of a family of linkages which includes the mirror image of that first
linkage; usually it is much better. From these constants one can then
obtain second approximations to the constants required for the direct
problem:

wa® = —#5(12’ = pa®,

WP = —pac®, . (70)

yb‘z” = #5(22) Y, cop #bgz)_

The values of ub, and kb, have been improved ; the value of ua was frozen
in passing to the inverted problem, and is hence unchanged.

We can now return to a consideration of the problem as first formu-
lated. It is obviously desirable to take —ud® = pb$® as the chosen
value of ub,; repetition of the curve-fitting process leads to a still better
mechanization of the relation between ¢1 and ¢, characterized by the
constants

pbP(= —pd®), ubd®, ua®.

Thus by alternately considering the problem as formulated in Egs.
(53) and (63), and applying the methods of Secs. 511 and 5-12, one
obtains successively better approximate solutions, which usually con-
verge rapidly to a limit. The method is less laborious than might at first
be supposed, since the constants to be expected in all solutions but the
first are known approximately, and the complete overlay need not be
constructed.

It will be found that if one obtains a fair fit with a given pb;, one will
obtain also a reasonably good fit with —ub;. On application of the
method of successive approximations, these two approximate solutions
usually lead to two different solutions of the problem, which are equivalent
neither with respect to the residual error, nor with respect to mechanical
qualities. These two possibilities should receive separate consideration.

6-14. An Example of the Nomographic Method.——As a first example
of the nomographic method, we shall apply it in attempting to mechanize
the function presented in Table 5-1 in both direct and inverted forms.
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TaBLE 5-1.—GIvEN FUNCTIONS FOR THE ExaMPLE

(waler) (e1le.)
P2 e1, ¥1, @2
degrees degrees degrees degrees

0.0 0 0.0 0
22.3 10 3.4 10
34.1 20 9.0 20
43.6 30 16.9 30
52.1 40 26.6 40
60.0 50 37.7 50
68.3 60 50.0 60
75.9 70 62.6 70
83.1 80 76.1 80
90.0 90 90.0 90

This tabulated function is in fact the one generated by a three-bar
linkage with the following constants:

le = —170°, AX] = 900, Xgm = 1600, AX2 = 9007
pby =0, pa = —0.286,  uby = 0.0367,

B, _ Ay B,
=1 F=1e T = 2102

(1)

In applying the nomographic method we shall assume the ideal values for
the angular travels,

AX; = AX, = 90°, (72)
but shall begin by choosing a value of ub; which is not the best:
wh® = —0.1. (73)

In this way we can make particularly evident the convergence toward the
best constants that is usually afforded by the method of successive
approximations. A second and quite different example, without this
ad hoc character, will be found in Sec. 6-4.

Following the steps outlined in Sec. 5-11, we proceed thus:

(1), (2) In tabulating the given function, § = 10° has been chosen as
sufficiently small compared to the ranges of X; and X;; this will permit
use of Fig. B-1(folding insert in back of book) in applying the method.
In mechanizing the function in the direct form the spectrum of values o
0115 0°,10° . . . 90°. We have here n = 9. :

(3) The values of ¢f” appear in the first column of Table 5-1. Using
the y-scale of the nomogram, we transfer this spectrum of values to a strip
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of paper, as illustrated in Fig. 5-15. The direction of increasing r is
shown by an arrow.

(4) Tracing paper is used in making an overlay. This is taped to the
nomographic chart, which should be made on cardboard, and 36 points,
from P& to P18, are constructed and marked with the proper value
of s (Fig. 5-15). The reference lines are traced onto the overlay.

(56) The vertical lines of the spectrum up are omitted from Fig. 5-15
for the sake of clarity.

(6) Placing the zero point of the strip successively on each of the
points P®, with the arrow directed downwards, the 36 points P® are
located and labeled with their r-values. (In first approximations one can
sometimes skip half the values of 7 and half the values of s.)

(7), (8) The plus family of curves is now sketched (full lines in Fig.
5-15) through points with r-values successively increasing by 1 as s
increases; curves of the minus family (dashed in Fig. 5-15) pass through
points with r-values successively increasing by 1 as s decreases. The
complete family of curves is shown in the figure. This is really unneces-
sary, since one can tell at a glance that some of them cannot lead to a fit.
In particular, since ¢ is a single-valued function of s, one could here
omit the numerous curves that have infinities in their slopes.

The overlay is now turned about the horizontal reference line and
translated over the nomogram until a fit is found—a quite satisfactory
fit, as it happens, between the overlay curve s = —16 of the plus family
and the curve pb; = 0.075 on the nomogram. Figure 5-16 shows, on the
nomogram grid, the construction of the particular overlay curve for which
the fit was obtained, and the position of fit on the chart (dotted curve at
lower left). The fit has been made exact at the ends. The overlay curve
then deviates downward from the nomogram curve; on a large chart it
can be seen that the maximum error in 7 is a little more than one degree.
The reference lines on the overlay are also shown in the position of fit.

The elements of the linkage are thus established:

wb = —0.1, as assumed.

pb® = 0.075, read from the nomogram curve on which the fit was
made.

pa® = —0.265, read at the intersection of the vertical reference line

with the up-scale.

X = —202.5° or +157.5° read at the intersection of the horizontal
reference line with the #-scale. (When this reference line falls
off the nomogram, as it would here, an auxiliary reference line
on the overlay can be used.)

X{® = —160° = sj, since the curve that gives the fit is of the plus
family.
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By Eq. (56) we have (using the upper signs in the first equation, since the
fit was obtained with a curve of the plus family)

o1 = X1+ 160°,
o1 = Xo — 157.5° (74)

These last equations represent the given function with errors visible as the
vertical separation of the fitting curves in Fig. 5-16. Since the fitisexact
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Fi1e. 5:16.—Construction of overlay line and position of fit in first application of the
nomographic method. In the position of fit the overlay curve lies slightly below the
contour ub = 0.075.
at the ends of the range of X, the travels of both input and output of the
linkage as designed will have the required value, 90°. (It is not necessary
to make the fit exact at the ends, except perhaps in the last stage of the
design process. In earlier stages one can often accelerate convergence
on the ideal constants by seeking a good fit on the average rather than an
exact fit at any given points in the range.)

As a check it is useful to make a drawing of the linkage, showing the
cranks in their extreme positions (Fig. 5-17). The distance 4{" between
the crank pivots may be taken as the unit of length; the relative crank
lengths are drawn in as

10819 = 10-01 = 0.794,

a (75)
A3 _ j0-med — 100285 ~ 1,841,

]
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The constancy of the required length of the connecting link,

BY _ BY AP _ L uewo—am) — 10030 —
qo = A Ap — 10 10 2.188, (76)
provides a check on the quantities determined in the fitting process.

Of the constants thus determined for the linkage, b, has been held at a
preassigned value, but the others have taken on values that are good
approximations to those known to give an exact fit. Such behavior
is of course essential if the method of suecessive approximations (Sec.
5-13) is to be effective. We now apply this method to the improvement
of the linkage design.

~
~)

F1a. 5:17.—First approximate linkage for mechanization of the given function, Table 5-1.

The roles of ¢; and ¢z are to be interchanged throughout our next
treatment of the problem. The inverted function has already been
given in Columns 3 and 4 of Table 5-1. Now ¢z is to be associated with
the parameter X, of a new linkage; to remind us that this is a parameter
of the inverted problem we shall distinguish it by a tilde: X,. Similarly
o1 is to be associated with the parameter X, in the new linkage.

According to Eq. (69) we should begin the process of mechanizing the
inverted function by choosing ub® = 0.265. To facilitate construction
of the overlay we shall use an approximation to this:

wh(® = 0.25. )

Such rounding off of values is generally useful in practical design work;
we have here deliberately done it in such a way as to retard rather than
accelerate the convergence of the method.

We know that the linkage to be designed will not be very different, in
its dimensions and in the arrangement of the scales, from that of Fig.
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517. It must, however, differ from that linkage by reflection in a
vertical line, since the pivots are to be interchanged; and it may differ
also by reflection in a horizontal line. One can determine whether or not
this additional reflection is involved by examining the ¢;-scale, which, by
the convention introduced in the discussion leading up to Eq. (56), must
increase in the direction of increasing X, In the present case it is
evident that the two linkages must

°\ Yol .
1| differ also by a reflection in a horizontal
o ¥ 2! line; the appearance of the new linkage
\ub=025 3| will then be that of Fig. 517 turned
X upside down. One must accordingly
! G‘\ 4! expect X1, =~ —20° and on the overlay
i e\ will need to construct only a few curves
i i51 of the plus family with s =~ —2.
Lh‘ 0 Figure 5-18 shows the nomogram
6| curve ub = 0.25 used in construction of
#p=03 the overlay, and the few lines of the
s=-2 7| plus family that need to be drawn. It
is obvious that a good fit can not be
:8| obtained with curves for which % is not
a single-valued function of p. The
lg| curve s = —2, for which we expect this

fit, is, however, essentially single-valued.
The retrograde portion of this curve

Fic. 5-18—Scale and overlay for Closely overlaps the rest of it and is no
second application of the nomographic  bar to an accurate fit; its presence indi-
method. .

cates only that #. may reverse its
direction of change as the linkage operates.

When the overlay is turned about a horizontal line and moved over
the nomogram a very accurate fit can be found between the overlay line
s = —2 and the line ub, = 0.275 of the nomogram, in the position indi-
cated in Fig. 5:19. Also shown are the usual horizontal reference line
and the auxiliary reference line up = 0.3, which appears also in Fig. 5-18.
From the position of fit we read the following values of the constants:

wb® = 0.25, as assumed,

ub® = 0.275,

ug® = 0.011, (78)
xR =5

X@ = —20°

Since the fit was obtained with a curve of the plus family, we have

P2 = Xl + 200)
L1 = X~2 - 50. } (79)
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To make more evident the change in constants due to this second
calculation, we can rewrite the above results in terms of the constants of
the uninverted linkage. Remembering that the two linkages differ, in
this case, by reflections in both horizontal and vertical lines, we have

X =X,—-180° X, =X~ 180° (80a)
X1 = X, + 180°, Xom = X1 + 180°. (80D)
90°

Fra. 5-19.—Position of fit in second application of the nomographic method.

By use of these relations and of Eqs. (68), we have

ub® = —0.011,
ubP = 0.014,
pa® = —0.25,
X@ = —175°, (81)
X2 = 160°,

B(l2) A(22) _ _&2_), _

a = 09975, Lo = 1778, 105 = 1.837.

These quantities represent distinct improvements over the first
approximate values, except for pa® (which was rounded off in the wrong
direction and not allowed to improve during the second fitting) and the
ratios 42/A4; and B,/A; (which depend upon pa,). In particular, the
value of ub; deviates from the ideal by only one-tenth as much as the value
initially assumed. It is evident that a second application of the nomo-
graphic method to the mechanization of the given function in the direct
form, with ub, = —0.011, would lead to values of the constants very near
to the ideal.

THE GEOMETRIC METHOD FOR THREE-BAR LINKAGE DESIGN

We shall now discuss a geometric method for the design of three-bar
linkages for which the input travel AX is not fixed but may be treated as
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a variable parameter. This is a less common problem than that solved
by the nomographic method, in which both input and output travels are
treated as fixed; nevertheless, the method is a necessary and frequently
useful complement to the nomographic method.

The basic problem treated by the geometric method is that of finding
the three-bar linkage with given values of AX,; and B;/A4; which most
accurately generates a given function. In essence, the method is one
by which a rapid comparison can be made between the desired and the
actual positions of the input crank, for a series of positions of the output
crank, for any given linkage of a large family. This comparison is made
so easy that it becomes a relatively simple matter to find that linkage
of the given family which gives the best fit. This solution can be
improved, if desired, by a method of successive approximations like that
employed with the nomographic method: the values of B:/B, and AX,
determined by the first application of the procedure are treated as fixed,
and the initially chosen values of Bs/A, and AX, improved by a second
application of this procedure to the inverted function; then B./B; and
AX, are readjusted, and so on. When this method is employed, no
constant of the linkage is held at an arbitrarily frozen value.

b-16. Statement of the Problem for the Geometric Method.—The
problem to be solved by the geometric method is that of mechanizing a
given functional relation,

e
Ty = (x2|131) " Xy, I:Ilm

IIA HIA

x”‘], (82)

2m ToMm

as accurately as possible by a three-bar linkage with given output travel
AX; and given crank-link ratio B,/4.,.
A linkage will generate a relation

X, = (X,|X) - X, (83)

between its input and output parameters; it will constitute a mechaniza-
tion of the given function if there exists a linear relation between the
parameters X, X, and the variables x1, z,:

X1 — X = ky(zh — (%), (84a)
Xy — XP = ky(zs — ). (84b)

Here X{® and z{® are corresponding values of X, and z:, X§® and z{®
corresponding values of X, and z.; z{® and z{® do not stand in any neces-
sary relation to the limits of the interval of definition in Eq. (82).

In the problem at hand one knows both

AX, = Xouw — X, (85)

and
Azy = Zon — Zom (86)
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The magnitude of %, is thus determined:

A%,

ksl =
Also, it will be noted that a positive sign of k; implies direct identification
of the homogeneous parameters s, and H, corresponding to x, and X;; a
negative sign implies complementary identification. As in Sec. 59 we
can, without loss of generality in the design process, assume direct
identification of hs and H,, while admitting either direct or comple-
mentary identification of hy and H,. Thus k; may be considered as
completely known,
_AX,

ke = Az, (88)

but k; is unknown both as to magnitude and sign. The fixed parameters
of the problem are thus B,/A4. and k.; attention will be focused, in the
actual design process, on the adjustment of A1/A4., B1/A,, and k..

5-16. Solution of a Simplified Problem.—As in the case of the nomo-
graphic method, we first consider a simplified problem in which there are
only two adjustable parameters. Here we shall treat Bs/A,, ko, and &,
as fixed, and seek the best possible fit of the generated to the given func-
tion by adjusting 4,/4;and B;/4,. Wereserve for Sec. 5-17 an explana-
tion of the method for varying ;.

To solve this problem we choose a spectrum of values of the variable
zi:

1 A R T2
extending through the interval of definition of Eq. (82). Equation (82)
then defines a corresponding spectrum of values of x,:

O D (r ()
S N N

Since both k; and %, are known, Eq. (84) would define corresponding
spectra of X; and X,, if there were not present the unknown additive
constants X{® and X{®. Given values of these constants, one could
compute X{” and X{, and make sketches showing, for each r, the corre-
sponding positions of the input and output cranks, each in its correct
relation to its own zero position. Now, even though X{® and X{® are
unknown, one can still compute such quantities as

X — X = i@+ — af), (89a)

and
X({+l) —_— X(Zr) = kz(z(zH—l) —_— x(gr))_ (89b)

One can thus make a sketch showing the relative positions that the input
crank must have for a sequence of values of r, and a sketch showing the
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corresponding relative positions that the output crank must have, if the
given function is to be generated. Figure 5-20 shows such a set of relative
positions for the input erank, represented by the radial lines B{” from
the pivot point S;. The orientation of this figure with respect to the zero
position of X;—or, to put it another way, the direction on this figure of
the line 5.5; between the crank pivots of the linkage—is unknown, since
it depends on X{®. Similarly, Fig. 5-21 represents, by the radial lines
A from the pivot point 8;, the corresponding relative positions of the

F1a. 5-20.—The radial lines represent a series of relative positions of the input crank of a
three-bar linkage.

output crank; in this figure, too, the direction of the line S;S; between
the pivots of the linkage cannot be specified, since it depends on X{.
Figures 5 20 and 521 can be combined into a single figure representing
a sequence of corresponding crank positions in the desired linkage, by
placing them in proper relative positions. What the required relation-
ship of these figures should be we do not yet know, but we do know
enough about its characteristics to help us in finding it. For it is evident
that (1) if the crank lengths A, and B, are laid out on the same scale, and
(2) if the relative positions of the two figures are correct, and (3) if the
given function can actually be generated by a linkage with the given
B,/ A,, ki, and k., then the distances between the ends of the cranks, in
all corresponding positions, must be constant, and indeed equal to B,
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on the chosen scale. By applying this idea one can determine the rela-
tive positions of Figs. 520 and 5-21 which correspond to that three-bar
linkage (with the given constants) which most nearly generates the given
function; from the combined figure one can then read off the constants
of this linkage. To understand how this can be done we consider Figs.
5-20 and 5-21 in more detail.

The length A, of the output crank has been taken as the unit cg
length in both Figs. 5-20 and 5-21. In Fig. 5-21, the points P®, , . . y:

X g-ﬂ)_ Xz(r)

PO per+n

Fie. 5-21.—The radial lines represent a series of relative positions of the output crank
of a three-bar linkage; the circles represent corresponding possible positions for the remote
end of the connecting link.

P®, . .., P® represent a sequence of positions of the pivot T'; between
the output crank and the connecting link. In Fig. 5-20, one cannot con-
struct corresponding definite positions for the pivot T since the crank
length B, is unknown; instead, there is shown a sequence of circles of
different radii, each of which defines, by its intersections with the radial
lines, corresponding positions @@, . . ., Q®, . . ., @™, of this pivot
when the input crank has the appropriate length.

In Fig. 521 there has been constructed about each point P a circle
C having as its radius the known length B, of the link; the remote end
of the link, the pivot 7T, must lie somewhere on this circle. If it is
possible to generate the given function by a three-bar linkage with the
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given constants, it must now be possible to place Fig. 521 on Fig. 5-20 in
such a way that point @@ lies on the circle C®, point @ on circle CV,
and so on, as shown in Fig. 5-22. The value of A, in the required linkage
will then be the length of S.8; on the common scale of the figures; the
value of B; will be the radius of the circle on which the points Q©, . . . ,
Q®, . .., @™ lie; and successive configurations of the linkage will be
defined by the points S;, Sz, P9, Q@; S;, S,;, P, QV; ete.

Fia. 5:22.—Relative positions of Figs. 5-20 and 5-21 corresponding to a three-bar linkage
generating the given function.

In practical terms, the geometrical method of solving our restricted
problem may be summarized thus:

. Choose a spectrum of z;.

. Compute the spectral values of z,, X1 — X{, X, — X{.

. Construct Fig. 5-21 as a chart, on a sufficiently large scale.

. Construct Fig. 520 as a transparent overlay, on the same scale.

. Move this overlay freely, using both translation and rotation, over
the chart, seeking a position such that the circles C@, C®, | | .,
C™ pass through the points Q©@, QW, . . . , @™, on some circle
of the overlay. (In making this fit it may be necessary to consider
each overlay circle in turn.)

6. If a fit is found, the unknown constants of the link can be read off,

Ai/A. as the distance S.S;, B;/A, as the distance S,Q,. and

Xi1m, Xom as the corresponding angles in the combined figure.

O W N =
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7. If only an approximate fit is found, the error in the input angle, for
any given value of the generated output angle, can be read as the
angle subtended at Sy by the arc from the corresponding @ point
(for example, @) to the intersection of the corresponding C circle
(C™) with the arc §®Q™. Thus one should seek a position of the
overlay which makes these errors as small as possible, and deter-
mine the constants of the linkage as above.

It will be evident to the reader that a change in sign of k; will leave
Fig. 5-21 unchanged, but will produce the same effect on Fig. 520 as
turning the overlay face down. A single overlay, used face up or face
down, thus suffices for a given |k,].

6-17. Solution of the Basic Problem.—We now turn to the basic
problem of the geometric method, that of obtaining the best fit of the
generated to the given function by simultaneous variations of three
parameters of the linkage, keeping fixed the values of B;/A,and k,. This
can be accomplished without any essential complication of the procedure
deseribed in Sec. 516, by making a special choice of the spectrum of ;.
This has also the advantage that the overlay corresponding to Fig. 5-20
then has the same form for all problems and can be used again and again.

Let the spectrum of values z{” be chosen as

#=a L5 01, (90)
* where 3 and g are constants such that all values 2 lie within the range of
definition of Eq. (82). Equation (89a) then becomes

r+1 . g7
Xo+h — X0 = ks 9 T I = kg (91)

i
The separations of consecutive spectral values X{7, the angles between
successive positions of the input crank, will then change in geometrical
progression. Figure 5-20 has, in fact, been drawn for such a case.
So long as ki is unknown, one cannot construct an overlay like Fig.
520. To overcome this difficulty we construct an overlay, Fig. 5:23, on
which appear radial lines L® with separations

YO — YO = o, £=0,1,2, - - . (92)

(In principle, the sequence of #’s might start with other values than 0;
such cases can be reduced to the above by changing the choice of « and
renumbering the lines.) et us consider the n 4 1 lines of this system
labeled t = s, s+ 1, -« -, s+ - - -, s n, with separations

Ye+rtd . Yorn = ag® - g’. (93)
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These will have the same separations as, and can be identified with, the

lines B, B®, . . ., BY?, . .., B™, provided

k;& = ag’ N (94)
or

b =2 95)

Thus by identifying various lines L of Fig. 5-23 as the line B{®, one can
in effect assign to £, any value given by Eq. (95) for an integral s. The

23 24 25

|

F1a. 5-23.—Overlay for the geometric method.

overlay is completed by the system of concentric circles which appears
also in Fig. 520; it is used in the same way as that figure.
The procedure is then as follows:

(1) Choose a spectrum of values z{”, as given by Eq. (90). It is
usually satisfactory to take g = 1.1; § may be positive or negative and
should be so chosen that n, defined by

h;__ 11 Jl = A, (96)
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lies in the range between 8 and 12. It is advantageous to choose the
sign of §, and the corresponding value of z{®, so as to make the spectrum
of values z{” as evenly spaced as possible. Thus in the case illustrated
in Fig. 5-24q, in which dz;/dz1 decreases as x; increases, it is desirable to
choose z{” at the lower end of the range of x; and to make & positive;
when dx,/dz, increases as z, increases, as in Fig. 5-24b, 2 should lie
at the upper end of the range of z; and & should be negative.

(2) Compute the corresponding spectral values of z; and X, — X,
using Eqgs. (82) and (84b).

x; x2
{©0)
*2
—0 —a0 l___
Y ‘x @ n
6>0 §<0
(a) ®
Fia. 5-24.—Choice of z:® and 8 to make the spectral values z:( as evenly spaced as
possible.

(3) Construct a transparent overlay similar to Fig. 5-23, with succes-
sive radial lines at angles

g (97)

measured clockwise from the zero line. The value of g must be the same
as that chosen in Step (1); @ may be chosen arbitrarily but should be
small. Figure 523 has been drawn with ¢ = 1.1, @ = 1°. Label each
radial line with the corresponding value of &

(4) Using the spectral values of X, — X{, construct a chart corre-
sponding to Fig. 5:21. The length of the crank, 4, should be one unit
on the scale used in constructing the overlay. Lay down the successive
crank positions, A}, and about the end points P® construct circles C®
with the known radius Bs.

(5) Place the overlay on this chart, face up, and seek a position for it
such that the (n + 1) circles, C®, C™, €™, on the chart pass through
(n 4+ 1) points Q®, Qe+tV . . . Q¢+m on the overlay in which a circle
of the concentric family, labeled B,, intersects n + 1 consecutive radial
lines, L®, Le+D | Lletm,
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In seeking this fit one has to consider:

a. All possible positions on the chart of the point S, of the overlay.

b. All orientations of the overlay—i.e., all values of s.

c. All circles of the concentric family.

The problem is not as difficult as it might seem. Let the point S; of the
overlay be placed in a fixed position on the chart. Each circle of the
overlay will be intersected by the C circles in a sequence of points which
will be unchanged by rotation of the overlay. TUnless successive intervals
between these points change in geometric progression, by a factor g, there
is no possibility of obtaining a fit by turning the overlay. Thus, for each
position of the overlay center Sy, a quick inspection of the spacings of the
intersections of the two families of circles will suffice to determine whether
there is any chance of a fit on any circle of the overlay. By a systematic
survey of this type one can reject large areas of the chart as possible
positions for S;.

When a sequence of intersections has been found in which the intervals
change in about the right way, it becomes worth while to turn the overlay
until the radial lines in the region of intersection have similar spacings—
for example, until an s is found such that circles C® and C™ pass through
the points Q® and @®*", respectively. This configuration will corre-
spond to a linkage in which the errors in the generated function would
vanish at the ends of the range of z;; the errors in the generated function
in the intermediate range are evident, being measured by the angular
distances on the overlay between the points Q@+ and the intersections
of the circles C® with the B, overlay circle. With praectice one rapidly
develops a technique for improving this fit by smaller adjustments in the
position of S;, with corresponding rotations of the overlay.

(6) If an acceptable fit is not found with the overlay face up, turn
the overlay face down, and repeat the process.

(7) When a fit has been found, the elements of the linkage can be
read directly on the overlay scale; B,/A4 is the value of B for the overlay
circle on which the fit is obtained, and A4;/4. is the value of B for the
overlay circle that passes through the point S; on the chart. Limiting
configurations of the linkage are evident from the arrangement, and
values of X1, Xom, and X1a can be read.

Figure 5-22 actually represents an application of this method, since
Fig. 5-21 is, in fact, the portion of Fig. 5-23 in which s changes from 22
to 30. A full example of the method is presented in Sec. 5-19.

5-18. Improvement of the Solution by Successive Approximations.—
A first solution of the problem of mechanizing a given function can be
improved by successive applications of the geometric method, in essen-
tially the same way as with the nomographic method.
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The first approximate solution will have been found with fixed values
of the constants AX, and B:/4,. The first of these constants may be
determined by other factors in the problem, but the choice of the second
will have been to some degree an arbitrary one. If the choice of B;/4,
was very unfortunate, the fit obtained may be so bad that the process
must be repeated with another value of this constant. In most cases one
will find a reasonably good mechanization of the function—one which is
at least sufficiently good to serve as a guide in finding a better one. In
particular, note should be taken of the values found for the constants
B,/B; and AX, of this linkage.

Now let us consider the inverse of the function of Eq. (82),

r = (-’51112) ‘ Ty, (98)

with z, treated as the input variable. Interchanging the roles of z;, and
2z in Secs. 516 and 517, one can apply the geometric method to the
mechanization of this relation and thus obtain a second mechanization
of the original relation. The inverted problem differs from the original
in the interchange of B; and A,, X and 180° — X, (cf. Sec. 5-13). Thus
it is evident that appropriate choices for the fixed constants of the new
problems are

32 (1)
By B

Ap ~ BY (99)
AXY = AXP.

If the conditions of the problem dictate a special choice of AX,, one
should treat AX(® = AX{ also as a constant; the problem is then that
discussed in Sec. 5:16. [It can, of course, be treated by the method of
Sec. 5:17, with s restricted to a constant value determined by Eq. (94)
or Eq. (95)]. In other cases one will treat AX, as a variable parameter
in the inverted problem. In any case the inverted function will be
approximated by a linkage selected from a family which includes the
mirror image of the original linkage; the fit, if properly made, must be at
least as good as that found as a first approximation, and will usually be
appreciably better.

A third approximation can then be found by returning to the considera-
tion of the uninverted function and applying the geometric method with
the fixed constants

B® By
AP Bo (100)
AXP = AXP,

As a rule this process converges toward a certain optimum solution of
the problem. It is to be noted, however, that there may be several such
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approximate solutions within the class of three-bar linkages; which of
these i1s found will depend upon the initial choice of B:/4; and AX,.
When one finds a mechanically unsatisfactory solution of the problem, it
is usually profitable to start the process again with a different value of
Bz/ A 2.

In applying the geometric method it will be found that the values of
AX, and AX; converge more rapidly to a limit than do the ratios of the
sides of the quadrilateral. It is therefore suggested that this method be
abandoned as soon as the values of AX; and AX, are sufficiently well
determined, the calculation being completed by the nomographic method.

6-19. An Application of the Geometric Method : Mechanization of the
Logarithmic Function.—We shall now apply the geometric method to the
mechanization of the logarithmic function

zz = logi 71 (101)
in the range
1<z <10, 0<z <1 (102)
In terms of the homogeneous variables
-1
hi = ﬂg—ﬂ (103)
he = x,, (104)

the relation to be mechanized becomes
he = logio (9h1 + 1). (105)

Since the logarithmic function is of the type illustrated in Fig. 5-24q,
we shall choose a positive 8. The spectrum of values of the homogeneous
variable h; can then be written as

RO =0,
g—1

h(r')= -5

! g—1 (106)

(ﬂ)=gn_—1.

W =1 s

We shall choose ¢ = 1.1, n = 10. Solution of the last of Egs. (106),
with h{® = 1, gives
§ = 0.0627. (107)

The values of 2{” can then be computed by Eq. (106), and the correspond-
ing values of A’ by Eq. (105). The resulting values arc shown in
Table 5-2,
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TABLE 5-2.—SPECTRAL VALUES FOR THE LOGARITHMIC RELATION

r K B
0 0.0000 0.0000
1 0.0627 0.1943
2 0.1318 0.3397
3 0.2077 0.4578
4 0.2912 0.5588
5 0.3830 0.6481
6 0.4841 0.7289
7 0.5952 0.8032
8 0.7175 0.8726
9 0.8520 0.9379

10 1.0000 1.0000

If we express this relation in the inverted form, treating z; or h; as the
input variable, the function is of the type shown in Fig. 524b. In
mechanizing this by the geometric method the spectral values of ke
should be chosen with 6 negative. Distinguishing by a tilde the spectral
values required in this inverse mechanization, we have

(108)

With ¢ = 1.1, n = 10, as above, one finds, on solving the last of these
equations, the same magnitude as before for 3:

§ = —0.0627. (109)

Thus
hP =1 —h; (110)

the corresponding values of k{®, computed by Eq. 105), are shown in
Table 5-3. .

We begin mechanization of the relation in the direct form by choosing
arbitrarily

B;l) . " o

a5 — 125 AXP = 100°, (111)
The overlay required for the work is determined as soon as ¢ and an
arbitrary small angle « are chosen; with & = 1° it has the form shown in
Fig. 5-23. The chart to be constructed depends, however, on the
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the sake of clarity in the picture, the chart is shown as lying above the overlay instead of below it.

Fig. 5-25.—Relation of chart and overlay corresponding to the first trial mechanization of the logarithmic function. For
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TABLE 5-3.—SPECTRAL VALUES FOR THE LOGARITHMIC RELATION IN INVERSE FoRM

, i im 55° X h{?,
‘ degrees

0 1.0000 1.0000 55.0
1 0.9373 0.8506 46.8
2 0.8682 0.7092 39.0
3 0.7923 0.5777 31.8
4 0.7088 0.4572 25.1
5 0.6170 0.3489 19.2
6 0.5159 0.2533 13.9
7 0.4048 0.1711 9.4
8 0.2825 0.1018 5.6
9 0.1480 0.0451 2.5
10 0.0000 0.0000 0.0

particular problem here considered. On this chart (cf. Fig. 5-25) the
lines A radiate from the point 8., making angles h?AX, = h{’100°
with the zero line. The points P lie on these lines at unit distance from
Ss.  About each of these is drawn a circle ™ with radius

% = B, = 1.25.

This completes preparation of the equipment. The overlay is now
placed face up on the chart, and it is found (as shown in Fig. 5-25) to be
possible to make the circles C) pass, approximately, through the points
Q®W . . . QU9 at which the interpolated circle B = 0.95 on the overlay
(dashed circle in Fig. 5:25) intersects the radial lines L®V to LY. The
fit, however, is rather poor at the points Q¥ Q@®, Q®, In addition, the
linkage would be mechanically unsatisfactory because of the small angles
between the output crank and the link at small r, and between the input
crank and the link at large r. (The extreme configurations are indicated
by dashed and heavy solid lines in Fig. 5:25.) The fit could be improved
by the method of Sec. 5-18, but the approximate solution thus found
would probably have the same unsatisfactory mechanical characteristics.
No satisfactory fit can be obtained by turning the overlay face down.
We therefore repeat the process with another choice of B;/As.

We now try

B _ 18 axp = 100° (112)
AP .8, .
The overlay is unchanged, and the chart is changed only in that the
circles C™ have the larger radius B, = 1.8. The same chart can thus be
used again, with the new circles drawn in ink of another color. A more
satisfactory fit can now be obtained, this time with the overlay face
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rlay rather than below it.
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F1a. 5-26.—Relation
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down (Fig. 5:26); the circles C® to C'® pass very nearly through the

points @©@ to Q1®, at which the overlay circle B =

radial lines L% to L, From this figure one reads the constants of

the linkage:

Hence

le)

1)

By
D

By

= 1.2;

J

= 1.5.

A(
A(l)

= 1.79.

1.2 intersects the

(113)

(114)

The angle AX, can be measured on the overlay, but is even more
easily obtained as the difference of tabulated values of V®:

AX, = YOe+tn — Y@, (115)
These values are given, for the overlay Fig. 523, in Table 5-4. In the
present case
AX, = Y@ — Y8 = 89 54° — 34.52° = 55.02°, (116)
TABLE 5:4.—Y® For g =11, = 1°
: Y1), ¢ Y@, f Y (), : Y@,
degrees degrees degrees degrees
0 10.00 10 25.94 20 67.27 30 174.49
1 11.00 11 28.53 21 74.00 31 191.94
2 12.10 12 31.38 22 81.40 32 211.14
3 13.31 13 34.52 23 89.54 33 232.25
4 14.64 14 37.97 24 98.50 34 255.48
5 16.11 15 41.77 25 108.35 35 281.02
6 17.72 16 45.96 26 119.18 36 309.13
7 19.49 17 50.54 27 131.10 37 340.04
8 21.44 18 55.60 28 144 .21 38 374.04
9 23.58 19 61.16 29 158.63

Although the linkage thus obtained is not mechanically satisfactory
when r is small (x; and z; near their lower limits), we attempt to improve
it by application of the geometric method to the inverted function, with

B(22) B(21)
Z—(P = B—(ll)— = 5 (117(1)
and _
AXP = AX( = 55°, (117b)

A completely new chart must be constructed, with radial lines A{? making
angles A0AX, = h{-55° with the zero hne the required values will be
found in Table 5-3. (It must be remembered that in this inverse problem
%. and X, vary together, as do %s and X;. In the procedure, A" now
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takes the place of h{; the values of A% have been so chosen that the
differences increase in geometrical progression and correspond to succes-
sive lines on the overlay.) The points P® are constructed at radius
AP =1, and about these are drawn circles C with radius BY® = 1.5
(Fig. 5-27). When the overlay is placed on this chart, face up, the
circles C™ can be made to pass very nearly through the points Q® at
which the circle B = 0.75 intersects the radial lines L'® to L®; on a
larger scale it can be seen that the fit is perhaps a little better than that
obtained in the preceding step, but the accuracy obtained in both cases
is about the best that can be expected of the geometric method. One
reads from the figure

R B y i)
BY 15 BY _o75, AP L3, (118a)
A(ﬂ?) (22) A(22)
hence
B(2)
B _ 90, (118b)

The input angular range is
AX® = Yo — yus = 88 61°, (119)
In terms of the constants of the uninverted problem the above results

become
B(22)' _ A(2) A(12)

== = 1.5 =L =075 == = 1.39
2. ! 2 ’ ’
o “he o (120)
2 =20
A(22) N
and
AXP = 88.61°, (121)

The values of BP/A$ and AX(® are not very different from those of
Eq. (112), with which we started; it is evident that the solution is not far
from the best one—or, at least, the best one with approximately these
constants. It is therefore reasonable to fix on definite travels,

AXl = 550, AXz = 900, (122)

as sufficiently close to the best values, and to determine a final design
using the nomographic method.
The reader will find it a useful exercise to carry through this step,
using the procedure of Sec. 5-11.
We have, by Eq. (51),
1 = hl - 550, (123)
pr = hs - 90°.
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TABLE 5-5.—SPECTRAL VALUES OF THE PARAMETERS

‘P(lﬂ y (r) (r) P;r)y
T degrees hi he degrees
0 0 0.0000 0.0000 0.0
1 10 0.1818 0.4209 37.9
2 20 0.3636 0.6306 56.8
3 30 0.5454 . 0.7715 69.4
4 40 0.7272 0.8777 79.0
5 50 0.9090 0.9627 86.7
6 60 1.0908 1.0341 93.1

To make it possible to use Fig. B-1, we choose § = 10°, though, in view
of the small value of AX, it would be better to use 6 = 5°. The spectral

=x,=logjo¥;

Fia. 5-28.—Approximate mechanization of z: = logio z1.

values ¢{” and ¢}’, computed with the aid of Eq. 105, appear in Table
55. The choice of ub, suggested by the last application of the geometrice
method [Eq. (120)] is

(2)
1
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Only a few lines need be drawn on the overlay. Picturing the mirrored
form of Fig. 527 with S; to the left of S, one sees that the scales of ¢
and X increase together, whereas ¢, and X, increase in opposite senses;
the fit is to be expected with an overlay curve of the minus family,
probably with s = 15, since X1» ~ 150°.

Choosing
by = —0.15,
we find
uby = 0.283,
ua = 0.260, (125)
X =88 = 1500,
Xom = —116.5°
Hence
B, _ B, 4; _
= 0.707, 1= 1.919, ol 1.820,
and finally (126)
B, Ay
T = 1.055, T = 0.550.

The linkage is sketched in Fig. 5-28. It will be discussed further in a
later example (Sec. 7-8).



CHAPTER 6
LINKAGE COMBINATIONS WITH ONE DEGREE OF FREEDOM

It is only rarely that one can mechanize a given function with high
accuracy by a harmonic transformer or a three-bar linkage. Usually a
more complex linkage must be employed in order to gain the flexibility
required in fitting the given function with sufficient accuracy. Instead
of devising entirely new structures it is better to combine the elementary
linkages; the double harmonic transformer discussed in Chap. 4'is such a
combination. Other useful combinations are the double three-bar
linkage—analogous in structure to the double harmonic transformer—and
combinations of single or double three-bar linkages with one or two
harmonic transformers. Choice of the proper combination should of
course be determined by the type of function presented for mechanization.
Techniques for the design of such linkages will be indicated in the present
chapter.

COMBINATION OF TWO HARMONIC TRANSFORMERS WITH A THREE-BAR
LINKAGE

6-1. Statement of the Problem.—The combination of two harmonic
transformers with a three-bar linkage, as sketched in Figs. 6-1 and 6-2, is
particularly useful when it is desirable to use slide terminals at both input
and output. (In these figures both harmonic transformers are indicated
as ideal; in practice both will usually be constructed as nonideal.) The
input’link and the crank R:S: constitute a harmonic transformer that
transforms the homogeneous input parameter H, into the homogeneous
angular parameter 6, The angular parameter corresponding to 6; will
be called X; (Fig. 6-2); the constants of the harmonic transformer are
then Xinm, AX:. (It is important to remember that 6;, not H,, is the
homogeneous parameter corresponding to X1.) The crank 7.8, rigidly
linked to R.S,, is described by an angular parameter X; and a homo-
geneous angular parameter s, which will be identically equal to 6;. The
input harmonic transformer thus carries out the transformation:

03 = (03[H1) ‘ Hl. (1)
The cranks 718, and T3Ss, with the link 7;7,, form a three-bar linkage
(constants Xsm, AXs = AX 1, X4m, AX,, etc.) that transforms the param-
eter 8; into another homogeneous angular parameter,

0, = (0463) - 85, (2)
166
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associated with the angular parameter X, The crank RS, rigidly
linked to T',S., is described by the angular parameter X, or by the
homogenous angular parameter 0., identically equal to 6,. Finally, the
crank R.S: and the output link form a harmonic transformer (constants
Xom, AX, = AX,), which trans-
forms 8, = 6, into the homogeneous
output parameter

Hz = (Hgle.;) . 04. (3)

It will be noted that the angles
X, and X describing the harmonic 77777777777 7777777777
transformers cannot in general be Fie. 6:1.—Three-bar linkage combined with
measured from the same zero lines two harmonic transformers.
as the angles X5 and X, describing the three-bar-linkage configuration, if
the conventions of the preceding chapters are to be maintained. 1In the
particular cases illustrated in Figs. 6-1 and 6-2, in which the input and
output links of the transformers are parallel to the line of pivots of the
three-bar linkage, the zero lines for X, and X, are perpendicular to those
for X 3 and X 4

H,—

-1
i

\

\

1

i

]

]

~
Y S

Fig. 6-2.—Combination of three-bar linkage with two harmonic transformers, sketched in
its extreme positions.

The linkage as a whole carries out the transformation
H, = (H,|H,) - Hy, 4)

where
(Ho|Hy) = (Ha|8,) - (04]65) « (85| H)). )]

Given a functional relation in homogeneous form,
he = (hz|h1) s ha, (6)

one will wish to find harmonic-transformer functions, (H,|6,) and (63/H),
and a three-bar-linkage function, (6848;), such that the product operator
(H,|H,) will approximate as closely as possible to (hs|h:), on direct or
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complementary identification of the parameters (H., H,) with the
variables (h1, 12).

It would be very difficult t- find the best approximation to (helhy)
within the twelve-parameter family of available functions. The tech-
nique to be described is intended only as a practically useful method for
obtaining a good result in a reasonably short time. This involves a
preliminary resolution of the desired operator (H,|H,) into three factors:
two harmonic transformer operators (usually ideal), and a third operator
to be mechanized by the three-bar linkage. When the three-bar linkage
has been designed, by the methods of Chap. 5, the harmonic transformers
are redesigned, almost invariably as nonideal, in order to get a better fit
to the given function. Finally, the over-all error is further reduced by
small simultaneous variations of all constants of the linkage, by methods
to be discussed in Chap. 7.

6-2. Factorization of the Given Function.—A rapid method for finding
a satisfactory preliminary factorization of (H. H,) is essential to the
success of this procedure. Let Eq. (5) be multiplied from the left by
(84 Hy), from the right by (Hi/6:). One obtains

(84]05) = (84/H,) - (Ho|H ) - (H,[63). (7Y

Of the quantities on the right, (H,|H;) has a prescribed form in the given
problem, and the operators (8:|H,) and (H1|65), though unknown, are of a
relatively limited class—particularly when attention is restricted to the
ideal-harmonic-transformer operators of Tables A-1 and A2 in carrying
out the preliminary factorization. More or less reasonable choices of the
operators (0,/H,) and (H1/65) can be based on consideration of the form
of the given function. One can then quickly determine, by the graphical
multiplication corresponding to Eq. (7), the required form of (64(85).
Inspection of this function will suffice to indicate whether it can be
approximated by a three-bar-linkage function. If so, the constants of
that linkage can be found by the methods of Chap. 5; if not, the problem
must be reconsidered and another choice of harmonic-transformer func-
tions tried. This process of trial and error is not excessively burdensome
since each trial involves only reference to Tables Al and A-2 and a
graphical co